Attempt any four questions. All questions carry equal marks.

1. Find the inverse of the element \(\begin{pmatrix} 2 & 6 \\ 3 & 5 \end{pmatrix} \) in \(GL(2, \mathbb{Z}_7) \).

 Let \(G = \left\{ \begin{pmatrix} a & a \\ a & a \end{pmatrix} \mid a \in R, a \neq 0 \right\} \). Show that \(G \) is a group under matrix multiplication.

2. Prove that a group \(G \) is Abelian if and only if \((ab)^{-1} = a^{-1}b^{-1}\) for all \(a \) and \(b \) in \(G \).

 How many subgroups are there, of cyclic group \(\mathbb{Z}_{40} \). Find them and write the elements of all the subgroups.

3. Let \(\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 3 & 5 & 4 & 6 \end{pmatrix} \) and \(\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 1 & 2 & 4 & 3 & 5 \end{pmatrix} \). Compute each of the following

 (i) \(\alpha^{-1} \), (ii) \(\beta \alpha \), (iii) \(\alpha \beta \).

 Also find the orders of \(\alpha, \beta, \alpha^{-1}, \beta \alpha, \alpha \beta \).

4. Show that the set \(S = \left\{ \begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix} : a, b \in \mathbb{Z} \right\} \) is a subring of the ring \(M_2 \) of \(2 \times 2 \) matrices over integers.

 Prove that the only ideals of a field \(F \) are \(\{0\} \) and \(F \) itself.

5. Let \(V = \{a_2x^2 + a_1x + a_0 : a_0, a_1, a_2 \in \mathbb{R} \} \) be a vector space over \(\mathbb{R} \). Show that \(\{x^2 + x + 1, x + 5, 3\} \) is a basis of \(V \).

 Let \(V = \mathbb{R}^3 \) and \(W = \{(a, b, c) : a, b, c \in \mathbb{R} \text{ and } a + b = c \} \). Is \(W \) a subspace of \(V \)? If so, what is its dimension?

6. Which of the following maps \(T: \mathbb{R}^2 \to \mathbb{R}^2 \) are linear transformations?

 (i) \(T(x_1, x_2) = (1 + x_1, x_2) \), (ii) \(T(x_1, x_2) = (x_2 - x_1, 0) \).

 Let \(T: \mathbb{R}^3 \to \mathbb{R}^2 \) be a linear transformation such that \(T(2,1,0) = (1,2), T(1,0,−1) = (−1,1) \) and \(T(0,3,1) = (1,3) \). Find \(T(5,3,−1) \).