Name of the Department	:	Physics
Name of the Course	:	B. Sc. (H) Physics – CBCS - NC (LOCF)
Semester	:	Ι
Name of the Paper	:	Mathematical Physics I
Unique Paper Code	:	32221101
Question Paper Set Number	:	В
Maximum Marks	:	75

Time Duration: 3 hours Instruction for Candidates

- **1.** Attempt **FOUR** questions in all.
- 2. All questions carry equal marks.
- 1. Solve the following first order differential equations

a.
$$(x+y+1)\frac{dy}{dx} = 1$$

b. $y \, dx + (2x - y \, e^y) \, dy = 0$

- c. A metal bar is kept at a temperature of $100^{\circ} F$. It is placed in a room whose temperature is $10^{\circ} F$. After 20 minutes, the temperature of the metal bar is $55^{\circ} F$. How much time will it take for the metal bar to reach a temperature of $20^{\circ} F$? Determine the temperature of the metal bar after 10 minutes.
- 2. Solve the following second order differential equations

a.
$$\frac{d^2 y}{dx^2} + 9 y = \sec 3x$$

b.
$$\frac{d^2 y}{dx^2} - 4 y = x^2 e^{3x}$$

c.
$$\frac{d^2 y}{dx^2} - 3 \frac{dy}{dx} + 2 y = (1 + e^{-x})^{-1}$$
 (Use the method of variation of parameters)

3. Find the shortest distance from the point (1, -2, 1) to the plane determined by three points (2,4,1), (-1,0,1) and (-1,4,2). Find the value of 'a' for which the vectors $2\hat{i} - \hat{j} + \hat{k}$, $\hat{i} + 2\hat{j} - 3\hat{k}$ and $3\hat{i} + a\hat{j} + 5\hat{k}$ are co-planar. If f(r) is differentiable, then show that $f(r)\vec{r}$ is irrotational.

- **4.** If ϕ is a scalar field and \vec{A} is a vector field, then prove that,
 - $\vec{\nabla} \circ (\phi \vec{A}) = (\vec{\nabla} \phi) \circ \vec{A} + \phi (\vec{\nabla} \circ \vec{A}). \text{ Hence evaluate, } \vec{\nabla} \circ (r^3 \vec{r})$ Show that, $\iint_V \vec{\nabla} \phi dV = \iint_S \phi \hat{n} dS$
- 5. Evaluate $\int_{C} \vec{F} \cdot d\vec{r}$ where $\vec{F} = (x-3y)\hat{i} + (y-2x)\hat{j}$ and C is the closed curve in the *xy*-plane, $x = 2\cos t$, $y = 3\sin t$ from t = 0 to $t = 2\pi$. Verify the divergence theorem for $\vec{A} = 2x^{2}y\hat{i} - y^{2}\hat{j} + 4xz^{2}\hat{k}$ taken over the region in the first octant bounded by $x^{2} + z^{2} = 9$, x = 2.
- **6.** Obtain the expression for curl of a vector in orthogonal curvilinear coordinates and express it in spherical coordinates. In spherical coordinates, verify, $\vec{\nabla} \frac{1}{r} = \vec{\nabla} \times (\cos \theta \, \vec{\nabla} \, \phi)$

In a football match, an average of 3 goals are scored in each game. What is the probability that 4 goals are scored in a game?