Name of the Course	: B.Sc. (Hons.) Mathematics CBCS (LOCF)
Unique Paper Code	: 32351303
Name of the Paper	: BMATH307 – Multivariate Calculus
Semester	: III
Duration	: 3 Hours
Maximum Marks	: 75

Attempt any four questions. All questions carry equal marks.

1. Let
$$f(x, y) = \begin{cases} \frac{y^3}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$

Is the function f continuous at (0,0)? Justify your answer.

Find an equation for the tangent plane to the surface z = f(x, y) defined above at the point $P_0\left(1, 2, \frac{8}{5}\right)$. Also find the directional derivative of f(x, y) at $P_0(1, 2)$ in the direction of $\mathbf{v} = 3\mathbf{i} - 2\mathbf{j}$.

2. Find the critical point and classify each point as a relative minimum, relative maximum, or a saddle point of

$$f(x, y) = xye^{-8(x^2+y^2)}$$

Find the maximum and minimum values of f(x, y, z) = xyz subject to the constraint $x^2 + 2y^2 + 4z^2 = 24$.

Where is the function $f(x, y) = \sqrt{x^2 + y^2}$ differentiable?

3. Compute $\iint_R x e^{xy} dA$ where R is the rectangle $0 \le x \le 1, 1 \le y \le 2$, using iterated integrals in both orders.

Evaluate $\iint_R 6x^2y \, dA$ if R is the region bounded between the curves y = x, y = 1 and $4y = x^2$.

Find the area of the region bounded between the curves $r_1(\theta) = 2 + \sin 3\theta$ and $r_2(\theta) = 4 - \cos 3\theta$.

4. Find the mass of the ellipsoid $4x^2 + 4y^2 + z^2 = 16$ lying above the xy-plane if the density is given by $\delta(x, y, z) = z$.

Determine the centroid of the solid bounded above by the sphere $x^2 + y^2 + z^2 = 1$ and below by the *xy*-plane plane where the density is given by $\delta(x, y, z) = z$.

Compute $\int_0^1 \int_0^1 x^2 y \, dx \, dy$ by changing u = x and v = xy.

5. Evaluate $\oint_C (x^2 z dx - y x^2 dy + 3 dz)$ where C is the boundary of the triangle with vertices (0, 0, 0), (1, 1, 0) and (1, 1, 1).

Find a non-zero function h for which

$$F(x, y) = h(x)(x \sin y + y \cos y)\mathbf{i} + h(x)(x \cos y - y \sin y)\mathbf{j}$$

is conservative.

Using line integral, find the area of the region enclosed by the asteroid

 $x = a \cos^3 t$, $y = a \sin^3 t (0 \le t \le 2\pi)$.

6. Find the mass of the lamina that is the portion of the paraboloid $z = x^2 + y^2$ that lies below the plane z = 2 with constant density δ_0 .

Verify Stokes' Theorem if F(x, y, z) = (x - y)i + (y - z)j + (z - x)k and S be the portion of the plane x + y + z = 1 in the first octant assuming that the surface has an upward orientation.

Using the Divergence Theorem, evaluate $\iint_S F.NdS$, where $F(x, y, z) = (z^3i - x^3j + y^3k)$ and S is the sphere $x^2 + y^2 + z^2 = a^2$, with outward unit normal vector N.