1. Apply Dijkstra’s Algorithm OR Improved version of Dijkstra’s Algorithm to find a shortest path from A to F, also write steps wherever possible.

In the pseudograph given below either describe an Eulerian circuit or explain why no Eulerian circuit exists.

2. Prove or disprove the statement: Homomorphic image of modular lattice is modular.

Construct a lattice L with 0 and 1, so that L has at least one element having three complements.
Verify whether the lattice given below is modular and /or distributive, by using M3-N5 theorem.

Find the disjunctive normal form of the Boolean polynomial \(p = (xy' + xz)' + x' \). Further, find the conjunctive normal form of 'p'.

3. Explain the Königsberg bridge problem and discuss the solution provided by graph theory to this problem. The degree of each vertex of a certain graph is either 4 or 6. The graph has 12 vertices and 31 edges. How many vertices of degree 4 are there? Draw the subgraphs \(G \setminus \{e\} \), \(G \setminus \{v\} \) and \(G \setminus \{u\} \) of the following graph \(G \).

Find the adjacency matrices \(A_1 \) and \(A_2 \) of the graphs \(G_1 \) and \(G_2 \) shown below. Find a permutation matrix \(P \) such that \(A_2 = PA_1P^T \).

4. Is the expression \(y'z' \) an implicant of the expression \(xy'z' + x'y + x'y'z' + x'yz \). Give reasons for your answer.
What are prime implicants of \(p = xyz + xyz' + xy'z + x'yz + x'y'z \)?

Using K-maps or Quine–McCluskey method, find the minimal sum of products form of the polynomial \(p \).

Give the symbolic representation of the circuit \(q = (x'yz)' + x'y'z' + (xy'z)' + xy'z' \).

Also, draw the contact diagram of above circuit \(q \).

5. Let \(X = \{1, 2, 3\} \). Consider the partial ordered set \((L, \leq) \) where \(L = P(X) \) is the power set of \(X \) and \(\leq \) is defined as, \(U \leq V \) if and only if \(U \subseteq V \ \forall U, V \in L \). Draw Hasse diagram of \((L, \leq) \). Prove or disprove that \((L, \leq) \) is a chain. Justify your answer. Find a subset of \((L, \leq) \) that forms a chain with respect to the same partial order relation.

Consider poset \(Q = \{a, b\} \) where \(a < b \). Is the map \(\theta : L \to Q \) order preserving where

\[
\theta(U) = \begin{cases}
 a, & \text{if } U = X \\
 b, & \text{if } U \neq X
\end{cases}
\]

Justify your answer.

Exhibit an order isomorphism between the given partial ordered set \(L = P(X) \) and partial ordered set \(S \) of all positive divisors of 30, with respect to the order that for any \(a, b \in S \), \(a \leq b \) if and only if \(a \) divides \(b \). Are the Hasse diagrams of two partial ordered sets \((P(X), \subseteq) \) and \((S, \leq) \) identical?

State a result describing a relationship between the existence of an order isomorphic map between any two finite ordered sets \(A \) and \(B \) and their Hasse Diagrams. Can you prove this statement?

6. Let \(L_1 = \{2, 4, 8, 10, 20, 40\} \) and \(L_2 = \{1, 2, 4, 5, 20\} \) be partially ordered sets with divisibility as the partial order relation. Are \(L_1 \) and \(L_2 \) lattices? Justify your answer. Show that the collection of all subgroups of a group \(G \) forms a lattice.

Consider lattices \(L_3 \) and \(L_4 \) represented by the Hasse diagrams shown below

\[L_3\quad L_4\]

Draw the Hasse diagram of lattice \(L_3 \times L_4 \).

Give example of a subset \(S \) of a lattice \(L \), which is not a sublattice of \(L \) but is itself is a lattice.