Name of the Course	: B.Sc. (Prog.) / Mathematical Sciences -(LOCF)
Semester	: III
Unique Paper Code	: 42354302
Name of the Paper	: Paper III-Algebra

Duration: **3 Hours**

Maximum Marks: 75

Attempt any four questions. All questions carry equal marks. All symbols have usual meaning.

1. Prove that $\left\{ \begin{bmatrix} x & y \\ z & w \end{bmatrix} : x, y, z, w \in \mathbb{Z}_{11} \right\}$ is a group under matrix multiplication. Is this group abelian? Give an example to verify your answer.

Find the inverse of $\begin{bmatrix} 2 & 6 \\ 3 & 5 \end{bmatrix}$ in GL(2, \mathbb{Z}_{11}).

2. Find the order of the group and order of each element in the group where the groups are \mathbb{Z}_{12} and U(10).

Show that $U(14) = \langle 3 \rangle = \langle 5 \rangle$.

Show that $U(20) \neq \langle k \rangle$ for any $k \in U(20)$.

3. Let $A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 3 & 5 & 4 & 6 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 1 & 2 & 4 & 3 & 5 \end{bmatrix}$. Compute A^{-1} , AB, BA.

Let α , $\beta \in S_{n}$, where S_n is a group of symmetries of degree *n*. Prove that i) $\alpha^{-1} \beta^{-1} \alpha \beta$ is an even permutation. ii) $\beta \alpha \beta^{-1}$ and α are both even or both odd.

4. Let $M_2(\mathbb{Z})$ be the ring of all 2 x 2 matrices over the integers and let

$$S = \left\{ \begin{bmatrix} x & x - y \\ x - y & y \end{bmatrix} : x, y \in \mathbb{Z} \right\}.$$

Prove or disprove that *S* is a subring of $M_2(\mathbb{Z})$.

Consider the ring *D* as follows

 $D = \{a + ib + cj + dk : a, b, c, d \in \mathbb{R}\}$

where $i^2 = j^2 = k^2 = -1$ and ij = k = -ji, jk = i = -kj, ik = j = -ki. Prove or disprove that *D* forms a field.

Find a zero-divisor and a non-zero element *a* satisfying $a^2 = a$ (other than 1) in the ring $\mathbb{Z}_5[i]$, where $\mathbb{Z}_5[i] = \{x + iy : x, y \in \mathbb{Z}_5, i^2 = -1\}$.

5. Let *W* be the subset of \mathbb{R}^4 , where

 $W = \{(a, b, c, d) \in \mathbb{R}^4 : c = a + 2b \text{ and } d = a - 3b\}.$

- i) Check whether *W* is a subspace of \mathbb{R}^4 or not.
- ii) Find a basis of *W* and give its dimension.

Consider the set of vectors *S* from \mathbb{R}^3 such that $S = \{(2, 2, 3), (-1, -2, 1), (0, 1, 0)\}.$ Check whether *S* spans \mathbb{R}^3 . Is *S* linearly independent?

- **6.** Let $L : \mathbb{R}^2 \to \mathbb{R}^3$ be defined by $L(v_1, v_2) = (v_1 v_2, v_1, 2v_1 + v_2)$. i) Prove that *L* is a linear transformation from \mathbb{R}^2 to \mathbb{R}^3 .
 - ii) Find basis for the Null space N(L) of L and compute Nullity.
 - iii) Find Rank of *L*. Further, verify Rank Nullity Theorem.