Name of Course	: CBCS B.Sc. (H) Mathematics
Unique Paper Code	: 32351302_OC
Name of Paper	: C6-Group Theory-I
Semester	: 111
Duration	: 3 hours
Maximum Marks	: 75 Marks

Attempt any four questions. All questions carry equal marks.

- 1. Let $G = GL(n, \mathbb{R})$. Let $H = \{A \in G \mid \det A \text{ is a power of 5}\}$. Then prove or disprove that H is a subgroup of G. Find the elements in U(10) and U(12) that satisfy the equation $x^2 = 1$.
- List all the elements of order 3 in Z₂₄. Find the smallest subgroup of Z containing 12 and 18. Determine the subgroup lattice for Z₂₄.
- 3. Let S_n be the symmetric group of degree n. Suppose that α ∈ S_n can be written as a product of disjoint cyclic permutations of lengths m₁, m₂, ..., m_r, (r ∈ N), respectively. Then prove that the order of α is lcm(m₁, m₂, ..., m_r). Find the orders of (13)(27)(456)(8)(1237)(648)(5) and (124) (345). Furthermore, show that if H is a subgroup of S_n then either every member of H is an even permutation or exactly half of them are even. Also, find Z(S_n) for n ≥ 3.
- 4. Show that for a finite group G, the index of a subgroup H in G is |G|/|H|. Prove that every subgroup of index 2 of a group G is normal. Give an example of a subgroup H of index 3 in a group G which is not normal in G. Also, determine the index of $3\mathbb{Z}$ in \mathbb{Z} .
- 5. Let $H = \{\beta \in S_5 : \beta(1) = 1\}$ and $K = \{\beta \in S_5 : \beta(2) = 2\}$. Prove that H is isomorphic to K. Is the same true if S_5 is replaced by S_n , where $n \ge 3$? Further prove or disprove that S_4 is isomorphic to D_{12} .
- 6. If H is a subgroup of G and K is a normal subgroup of G, then prove that $H/(H \cap K)$ is isomorphic to HK/K. Also determine all homomorphisms from \mathbb{Z}_n to itself.