Name of Course : CBCS B.Sc. Hons Mathematics
Unique Paper Code : 32351302
Name of Paper : BMATH306-Group Theory-1
Semester : III
Duration : 3 hours
Maximum Marks : 75 marks

Attempt any four questions. All questions carry equal marks.

1. Let \(A \) be a non-empty set and \(\langle G, \cdot \rangle \) be a group. Let \(F \) be the set of all functions from \(A \) to \(G \). Define an operation \(* \) on \(F \) as follows:

 \[
 (f * g)(x) = f(x) \cdot g(x) \quad \forall x \in A.
 \]

 Prove that \(\langle F, * \rangle \) is a group.

Find the inverse of \[
\begin{bmatrix}
2 & 1 \\
4 & 3
\end{bmatrix}
\]
in \(GL(2, \mathbb{Z}_5) \), the group of \(2 \times 2 \) non-singular matrices over \(\mathbb{Z}_5 \). Verify the answer by direct calculation.

Describe the group of symmetries of a non-square rectangle and draw its Cayley’s table.

2. Let \(a \) be an element of a group such that \(|a| = 3 \), prove that \(C(a) = C(a^2) \). Give an example to show that the conclusion fails if \(|a| = 4 \).

Find the orders of each of the elements of \(U(14) \). Show that it is cyclic and find all its generators.

3. Define Centre \(Z(G) \) of a group \(G \) and prove that \(Z(S_4) = \{e\} \).

For \(n > 2 \), show that every even permutation in \(S_n \) is a product of 3-cycles.

Let \(\sigma = (1,5,7)(2,5,3)(1,6) \). Express \(\sigma^{17} \) as a cycle.

4. Prove or disprove any six, stating the results used

 (i) \(\langle \mathbb{R}, + \rangle \approx \langle \mathbb{Q}, + \rangle \),
 (ii) \(\langle \mathbb{Q}, + \rangle \approx \langle \mathbb{Z}, + \rangle \),
 (iii) \(\langle \mathbb{R}, + \rangle \approx \langle \mathbb{R}^+, \cdot \rangle \),
 (iv) \(D_4 \approx \) Group \(Q \) of Quaternions,
 (v) \(U(20) \approx D_4 \),
 (vi) \(U(8) \approx U(12) \),
 (vii) \(U(10) \approx \mathbb{Z}_4 \),
 (viii) \(\frac{GL(2, \mathbb{R})}{SL(2, \mathbb{R})} \approx \mathbb{R}^+ \).

5. Let \(H \) be a subgroup of a group \(G \). Prove that \(aH \mapsto Ha^{-1} \) is a bijective mapping from the set of all left cosets of \(H \) in \(G \) to the set of all right cosets of \(H \) in \(G \). Can the same be said for \(aH \mapsto Ha? \)

 If \(G \) is a non-abelian group of order 8 with \(Z(G) \neq \{e\} \), prove that \(|Z(G)| = 2 \).

6. Let \(N \) be a normal subgroup of \(G \) and \(M \) be a normal subgroup of \(N \). If \(N \) is cyclic, prove that \(M \) is a normal subgroup of \(G \). Show by an example that the conclusion fails to hold if \(N \) is not cyclic.

 If \(\phi \) is a homomorphism from a finite group \(G \) to a finite group \(G' \), prove that \(|\phi(G)| \) divides the gcd of \(|G| \) and \(|G'| \).