
 a) b) c) d) e) f) 	Name of Course Semester Name of the Paper Unique Paper Code Duration Maximum Marks	: V : DSE: Green Chemistry : 32177908 : 3 h		
 <i>Instructions for Candidates:</i> 1. Attempt total <i>four</i> questions. First question for 21 marks is compulsory. 2. Question No 2 to 6 carries 18 marks each. 3. Attempt all parts of a question together. 				
i) Give ii) Wh iii) Giv iv) Wh v) Wh	t answers of the follow e example of a polyethe	er green solvent. have can't harm you'? t from biomass. or? tom economy?	(1 * 6)	
 (b) Fill in the blanks: (1 * 5) i) Wilkinson catalyst is a catalyst. ii) At a temperature 31.1°C and pressure 73.8 atm CO₂ exist as iii) Tertbutyl tin oxide is used as iv) is known as the father of green chemistry. v) The seventh principle of green chemistry states use feed stocks. 				
i) An a ii) Use iii) Ris iv) Ult human	e stoichiometric reagent sk is a function of harm rasound refers to sound a ear.	-	(1 * 5) le by the	
 (d) Give a brief definition of the following terms: i) Auxiliary substances ii) VOCs iii) Sustainable development iv) Atom economy v) Photocatalyst 				

 Q. 2 (a) Mention the chemical factors which led to the following industrial disasters: i) Flixiborough Accident ii) Bhopal Gas Tragedy 	(2* 3)		
 (b) Give chemical reactions for: i) Sono-chemical Simmons-Smith reaction ii) Microwave assisted Diels Alder reaction 	(2 * 3)		
(c) Explain the following:i) Though water is a green solvent but it is not as widely used in reaction as it shoii) The concept of inherently safer design of a chemical reaction.	(2 * 3) ould be.		
Q.3 (a) Explain the various terms of the formula $Risk = f$ (hazard, exposure).	(3)		
(b) What is the waste or pollution prevention hierarchy? Give its diagrammatic represent a pyramid.			
(c) What are chloro-fluoro carbons? Why they are not preferred as solvents? How green solvents overcome these disadvantages	(1,2,3)		
(d) What purpose marine antifoulant serve? Discuss the chemistry of some environmenta marine antifoulants.	ally safe (1,4)		
 Q.4 (a) Give one use of the following in terms of green chemistry: i) Perfluorodecalin ii) 4,5-dichloro-2-<i>n</i>-octyl-4-isothiazolin-3-one 	(2, 2)		
(b) Explain why surfactants are required while dry cleaning with supercritical CO ₂ . Give example of one such surfactant.	(2,1)		
(c) Discuss cradle to cradle carpeting.	(3)		
(d) Mention four future trends in green chemistry.	(4)		
(e) What is co crystal controlled solid state synthesis? Give one example.	(2,2)		
Q. 5 (a) What are alternative sources of energy? Give examples.	(2,2)		
(b) What is biodiesel? How it is prepared? What is the composition of B20?	(1,2,1)		
(c) What are biocatalysts. Mention their advantage and disadvantages.	(2,2,2)		

(d) Why the following conversion is not considered green? Which principle of green chemistry is not followed here? (2,2)

(3 * 4)

- Q. 6 (a) Write short note on:
 - (i) Immobilized solvents

(ii) Ionic liquids

- (iii) Phase transfer catalysis
- (b) Give the traditional and green synthesis of disodium iminodiacetate. Explain why catalytic hydrogenation method is green. (1,3,2)

3