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Attempt any four questions. All questions carry equal marks.

1. Given, f (x)={x+1 ,−1<x<0
x−1,0<x<1

,  f (x+2)= f (x)    

(a) Find Fourier Series representation for f (x) and hence show that
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(b) Using Parseval's Identity, prove that:
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2. (a) Given f (x)=x2 ,0<x<π , find even periodic extension of f (x) ,

              write down its Fourier Cosine Series and hence show that:
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(b) Using Beta and Gamma functions, evaluate:    
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tan4θdθ and  ∫
0
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   (4, 4)

3. (a)  Find the singular  points  of the following differential  equation  and classify them  

       as regular or irregular singular points.   

x2(x−2)
2d2 y
dx2

 + 2(x−2)dy
dx

 + (x+1) y  = 0    (4.75)

         (b) Solve the following differential equation using Frobenius method:     
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 ‒ y  = 0                               (14)
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4 (a) The general form of Bessel differential equation is given as:    

x2d
2 y

dx2
 + (1−2a)x

dy
dx

 + [a2−c2 p2
+b2c2 x2c ]y  = 0

Reduce this general form to the standard form

t2
d2 z
dt2

 + t
dz
dt

 + (t2− p2
)z = 0

  where, y  = xaz  and  t  = bxc.                                                                             (10)

    (b) Prove that: [J1 /2(x)]
2
 + [J−1/2(x)]
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5 (a) Write the generating function of Legendre Differential equation and hence find 

P1(x), P2(x) and P3(x)                            (7.75)

         (b) Expand the function f (x) = x4 ‒ 3x2 + x  in a series of the form

                        ∑
k=0

∞

A k Pk(x), where A k are real constants.    (11)

6 (a) Using the method of separation of variables, solve the following differential equation:
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+u 

      with  u(x ,0)=3e−5 x
+2e−5 x

 .                                                          (6.75)

     (b) By solving Laplace equation in 2D, determine the steady state temperature of a thin  rectan-

           gular plate bounded by the lines x=0 , x  = w , y=0 , y  = b, assuming that the 

         edges x=0 , x=w , y=0 are maintained at zero temperature and the edge y=b

         is maintained at steady state temperature F (x)=x                                                     (12)
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