Unique Paper Code	: 42351101
Name of the Paper	: Calculus and Matrices
Name of the Course	: B.Sc. (Math. Sci.)-I, B.Sc. (Phy. Sci.)-I, B.Sc. (Life. Sci.)-I
Semester	: I
Duration	: 3 Hours
Maximum Marks	: 75

Attempt any four questions. All questions carry equal marks.

- Check whether the set {(0,2,0), (3,0,-1), (-1,1,0)} is linear independent or not. Is the transformation T: ℝ² → ℝ² defined as T(x, y) = (2x + y, -y) linear? Sketch the image of the unit square with vertices (0,0), (0,1), (1,1), (1,0) under the given transformation. Find a matrix representation for T.
- 2. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation satisfying T(1, 1) = (1, 7) and T(1, 2) = (2, 6). Find a matrix representation for *T* and determine T(1, 3).

Find the eigenvalues and the corresponding eigenvectors of the matrix $A = \begin{bmatrix} 5 & -1 \\ 0 & 2 \end{bmatrix}$.

An amount of 20 ml of a medicine is injected into a patient's body. Half the amount of the medicine is absorbed by the patient body in 12 hours. How long will it take for the patient to absorb 70% of the medicine?

3. Solve, if consistent, the following system of linear equations using elementary row operations

$$x + y + z = 5$$

$$2x + 3y + 4z = 16$$

$$y - 4z = -12.$$

Reduce the following matrix A to triangular form using elementary row operations and also determine its rank

$$A = \begin{bmatrix} 1 & 2 & 3 \\ -1 & 5 & -17 \\ 2 & 11 & -8 \end{bmatrix}.$$

Is $W = \{(2x, y + 1, 0) : x, y \in \mathbb{R}\}\$ a subspace of \mathbb{R}^3 ? Justify your answer.

4. Discuss the convergence of the sequences $a_n = \sqrt{1 + (-\frac{1}{2})^n}$ and $b_n = 5^{n/(n+1)}$.

Find the n^{th} derivative of $y = 2e^x \sin x \cos 2x$.

Also sketch the graph of the functions

f(x) = 5 - |x + 3| and $f(x) = 1 + 3e^{-2x}$

mentioning the transformations used at each step.

5. Find the Taylor's polynomial of order 4 generated by the function $f(x) = \sin 3x$ at $x = \frac{\pi}{3}$. If u = f(r) where $r = \sqrt{x^2 + y^2}$ show that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f''(r) + \frac{1}{r}f'(r)$.

Verify that the function u(x, t) = sin(x + 3t) + cos(x + 3t) satisfies the Wave Equation.

6. Find the polar representation of the points $z_1 = -1 - i$, $z_2 = -1 + i\sqrt{3}$ and z_1z_2 .

Form an equation in lowest degree with real coefficients which has 3 - i, 1 + 3i as two of its roots.

Solve the equation $z^3 - 1 + i = 0$.

Find the equation of the straight line joining the points

 $z_1 = -1 - i$ and $z_2 = -1 + i\sqrt{3}$.