Name of the Course: CBCS B.Sc. (H) Mathematics
Unique Paper Code: 32353301
Name of the Paper: SEC: LaTeX and HTML
Semester: III
Duration: 3 Hours
Maximum Marks: 38

Attempt any four questions. All questions carry equal marks.

1. Fill in the blanks:

 (i) The boldfaced text in LaTeX is produced by \textbf{.................} command.

 (ii) The output of $a \times b$ in LaTeX is \textbf{.................}.

 (iii) The symbol ∞ can be produced in LaTeX using the command \textbf{.................}.

 (iv) The string \{c c c\} is used to define \textbf{...............} and \textbf{...............} in the array environment in LaTeX.

 (v) The combination of symbols \backslash is used in LaTeX to \textbf{...............} between the words.

 (vi) \textbf{...............} command is used to create horizontal dots above the line in LaTeX.

 (vii) In PSTricks, PS stands for \textbf{...............}.

 (viii) \textbf{...............} tag is used in HTML to add the largest heading to a paragraph.

 (ix) \textbf{...............} HTML attribute is used to center align a paragraph.

2. Answer the following:

 (i) Give the command using PSTricks to draw an elliptic arc having vertical radius 2 cm and horizontal radius 5 cm.

 (ii) Write the input command in LaTeX to produce the following:

 \[
 f(x) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos \left(\frac{n\pi x}{L} \right) + b_n \sin \left(\frac{n\pi x}{L} \right) \right)
 \]

 (iii) Correct the following input as per LaTeX commands:

 If $x = \alpha$ and $y = \beta$ then $\frac{\alpha}{\beta} = 2$.

 (iv) Write the code in LaTeX to plot the curves $y = \sin 2x$ and $y = \cos x$ on the same coordinate system for $x \in [0,2\pi]$. Show the sine function as a solid curve and cosine function as a dashed curve.

 (v) What is the difference between the following environments in LaTeX?
 (a) \vdots and \ddots
 (b) eqnarray and eqnarray*
 (c) enumerate and itemize

 (vi) Make the following element into a link that goes to \url{https://www.du.ac.in}

 <a> This is a link.
3. Find the errors in the following LaTeX commands, write the corrected version and its output.

\begin{verbatim}
\documentclass{beamer}
\usetheme{CambridgeUS}
\begin{title}{SYSTEM OF LINEAR EQUATIONS}\end{title}
\author{XYZ}
\begin{document}
\maketitle
\begin{frame}
\frametitle{System of Linear Equations}
\begin{eqnarray*}
a_{11}x_1+a_{12}x_2+\cdots + a_{1n}x_n = b_1 \\
a_{21}x_1+a_{22}x_2+\cdots + a_{2n}x_n = b_2 \\
\vdots \; \vdots \; \ddots \; \vdots & \; & \vdots \; \vdots \\
a_{m1}x_1+a_{m2}x_2+\cdots + a_{mn}x_n = b_m
\end{eqnarray*}
In the matrix form it can be written as \textbf{AX = b}. The augmented matrix of the system is
\begin{equation}
M=[A|b]=\left[\begin{matrix}
a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\
a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn} & b_m
\end{matrix}\right]
\end{equation}
\end{frame}
\begin{frame}
\frametitle{System of Linear Equations}
The system of linear equations is consistent if rank of $[A \vert b]$ is equal to the rank of A otherwise inconsistent.
\end{frame}

\begin{frame}
\start{center}
\Huge{Thank You}
\end{frame}
\end{document}
\end{verbatim}

4. Write the code in LaTeX to produce the following output:
5. Write an HTML code to generate the following web page and follow the given instructions while writing the code:

 (a) Font face of the text should be “Calibri”.

 (b) Text colour of the main heading should be blue and of the sub-headings should be red.

 (c) The image to be included in the web page should be named as “bgblogo.jpg”.

\[
E[|X|] = \int_{-\infty}^{\infty} |x|f_X(x)\,dx \\
= \int_{|x|\geq a} |x|f_X(x)\,dx + \int_{|x|<a} |x|f_X(x)\,dx \\
\geq \int_{|x|\geq a} |x|f_X(x)\,dx \\
\geq a \int_{|x|\geq a} f_X(x)\,dx \\
= aE[|X| \geq a] \\
\therefore E[|X| \geq a] \leq \frac{E[|X|]}{a}
\]

6. Create the following presentation in LaTeX using beamer:

 Slide-1

Black Goose Bistro

THE RESTAURANT

The Black Goose Bistro offers lunch and dinner in a good ambience. The menu changes regularly to highlight the freshest ingredients.

CATERING

You have FUN...we’ll handle the cooking. Black Goose Catering can handle events from snacks for kitty parties to elegant corporate lunches.

LOCATION AND HOURS

Block K, Connaught Place, New Delhi;

Monday through Thursday 11am to 11pm,

Friday and Saturday, 11 am to midnight
Volume of a Sphere

Myself
University of Delhi

Equation of a Sphere

The equation of a sphere is given by:

$$x^2 + y^2 + z^2 = r^2,$$

where r is the radius of the sphere.

Volume of a Sphere

Volume of a sphere is given by $V = \frac{4}{3}(\pi r^3)$.

To calculate the volume of a sphere:

- Cube the radius
- Multiply by 4π
- Divide by 3
Thank You!