Name of Course	: CBCS (LOCF) Generic Elective- Mathematics
Unique Paper Code	: 32355101
Name of Paper	: GE-1 Calculus
Semester	: I
Duration	: 3 hours
Maximum Marks	: 75 Marks

Attempt any four questions. All questions carry equal marks.

- 1. Find the critical points, inflection points and asymptotes (if any) for the function $f(x) = \frac{x^2+3}{x^2-4}$. Determine the region where the function increase or decrease and also discuss its concavity. Also, sketch the curve.
- 2. Evaluate the following limits using L'Hopital's rule $\lim_{x \to b} \frac{x^{b} - b^{x}}{x^{x} - b^{b}} \text{ and } \lim_{x \to \infty} [x - \ln(x^{5} - 10^{10})].$
- 3. Find the volume of the solid obtained by revolving the region bounded by the curves $y = 2x^2 + 1$ and $y = 3 2x^2$ about x-axis. Also find the length of the plane curve $y = 2x^2 + 1$ over the interval [1, 3]
- 4. Sketch the graph of $r^2 = \theta^2$, $0 \le \theta$ in polar coordinates.

5. Let
$$f(x, y) = \begin{cases} \frac{xy^n}{x^3 + y^{3n}}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$
 where $n > 1$.

Discuss the continuity of f(x, y). And show that $f_x(x, y)$ and $f_y(x, y)$ exist at all points (x, y).

6. Find the equation of parabola which has axis parallel to y-axis and which passes through the points (0, 2), (-1, 0) and (1, 6). And plot this parabola.

An ellipse circumscribes a rectangle whose sides are given by $x = \pm 2$ and $y = \pm 4$. If the distance between the foci is $4\sqrt{6}$ and major axis is along y-axis, then find the equation of the ellipse. Also, plot this ellipse.

Attempt any four questions. All questions carry equal marks.

- 1. Find the critical points, inflection points and asymptotes (if any) for the function $f(x) = \frac{x^2+3}{x^2-4}$. Determine the region where the function increase or decrease and also discuss it's concavity.
- 2. Evaluate the following limits using L'Hopital's rule: $\lim_{x \to b} \frac{x^{b-b^{x}}}{x^{x-b^{b}}} \text{ and } \lim_{x \to \infty} [x - \ln(x^{5} - 10^{10})].$

3. Let
$$f(x, y) = \begin{cases} \frac{xy^n}{x^3 + y^{3n}}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$
 where $n > 1$.

Discuss the continuity of f(x, y). And show that $f_x(x, y)$ and $f_y(x, y)$ exist at all points (x, y).

4. Find the equation of parabola which has axis parallel to y-axis and which passes through the points (0, 2), (-1, 0) and (1, 6).

An ellipse circumscribes a rectangle whose sides are given by $x = \pm 2$ and $y = \pm 4$. If the distance between the foci is $4\sqrt{6}$ and major axis is along y-axis, then find the equation of the ellipse.

- 5. If $w = \ln(x^2 + y^2 + z^2)$, $x = ue^v \sin u$, $y = ue^v \cos u$ and $z = ue^v$, find $\frac{\partial w}{\partial u}$ and $\frac{\partial w}{\partial v}$ using chain rule at the point (u, v) = (-2, 0).
- 6. Find the directions in which the function $f(x, y, z) = \ln xy + \ln yz + \ln xz$ increase and decrease most rapidly at the point $P_0(1, 1, 1)$. Then find the derivatives of the function in those directions.