Name of Course	: CBCS B.Sc. Mathematical Sciences
Unique Paper Code	: 42354401_OC
Name of Paper	: Real Analysis
Semester	: IV
Duration	: 3 hours
Maximum Marks	: 75 Marks

Attempt any four questions. All questions carry equal marks.

1. State and prove the condition for a sequence of real numbers to have a convergent subsequence. Is the converse true? Give example. Is every Cauchy sequence bounded? If yes, prove it.

2. Using the definition prove the convergence of the following sequences:

(i)
$$\lim \frac{\cos n\alpha}{n+1} = 0$$
 (ii) $\lim \frac{n^3 - 1}{3 + 2n^3} = \frac{1}{2}$ (iii) $\lim \frac{1}{(n+1)^2 + 1} = 0$

Further, find all $x \in \mathbb{R}$ that satisfy the inequality: |x| + |x + 1| < 2

3. Check the convergence or divergence of the following series

(i)
$$\sum_{n=1}^{\infty} \sqrt{n^3 + 1} - \sqrt{n^3 - 1}$$
 (ii) $\sum_{n=1}^{\infty} \frac{7^{n+1}}{9^n}$
(iii) $\sum_{n=1}^{\infty} \frac{n^3}{3^n}$ (iv) $\frac{1}{e} + \frac{4}{e^2} + \frac{27}{e^3}$

4. For each of the following, determine whether the series converges absolutely, converges conditionally, or diverges.

(i)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{4n+5}$$
 (ii) $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2n}{n+5}$
(iii) $\sum_{n=1}^{\infty} \frac{\sin n\pi/2}{n^{5/2}}$ (iv) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n\log n}$.

5. Check pointwise and uniform convergence of the sequence $\langle f_n \rangle$ defined as $f_n = nxe^{-nx^2}$ on [0,1]. Show that the series $\sum_{n=1}^{\infty} \frac{\sin(x^2 + nx^2)}{n(n+1)}$ is uniformly convergent for all real values of *x*. Further find the radius of convergence and interval of convergence for the power series

(i)
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n+1)}$$
 (ii) $\sum_{n=0}^{\infty} \frac{n! (x+2)^n}{n^n}$.

6. Let f be a function on [a, b] and P be a partition of [a, b] and Q be its refinement, then show that

$$U[Q,f] - L[Q,f] \le U[P,f] - L[P,f]$$

If *f* is defined on [0,1] by $f(x) = 2x^2 \forall x \in [0,1]$, then prove that *f* is Reimann integrable. Also find the value of integral. Further show that $\log(1 + x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots, -1 \le x \le 1$ and hence deduce that $\log 2 = 1 - \frac{1}{2} + \frac{1}{3} - \dots$