Name of the Course	:	B.Sc. Prog./Mathematical Sc.
Semester	:	п
Name of the paper	:	Database Management Systems
Unique Paper Code	:	42341202_OC
Year of Admission	:	2015, 2016, 2017 & 2018

Duration: 3 Hours

Maximum Marks: 75

Instructions for Candidates

- 1. Attempt any FOUR out of SIX questions.
- 2. All questions carry equal marks.
- 3. All parts of a question must be answered together in a single PDF file.
- 4. If required, you may make suitable assumptions and state them clearly.
- Q1 Assume a Relational Schema:

Faculty (Faculty_id, Name, Department_name)

Diagrammatically give the three-schema architecture for the **Faculty** schema, clearly indicating the respective view of the schema at each level. How is data independence achieved between different levels?

- Q2. A University database contains information about research supervisors in different departments and their students working on different projects. Draw ER (Entity-Relationship) diagram, specifying all the structural constraints for the following scenario:
 - Each research supervisor is identified by Sup_id, Name, Age, Position and Speciality.
 - Each research student is identified by Stud_id, Name, Age and Course (e.g. MS/PhD)).
 - Each project has a project number, Start date, End date, Funding agency, budget, and a Supervisor.
 - A supervisor can supervise multiple projects.
 - Every student is associated with only one project.
 - Each department has a department number, Name and Location.

• Projects are controlled by a department.

Map the ER-diagram into relations taking into account different entity types, relationships and attributes. Specify all primary keys and foreign keys.

Q3. Consider the following database relations:

```
Teacher (<u>TID</u>, Name, Address, Gender, Specialisation)
Course (<u>CNo</u>, CName)
Teaches (<u>TID</u>, <u>CNo</u>)
```

where the primary keys are underlined. Give an expression in the relational algebra to express each of the following queries:

- List course numbers which are not taught by any teacher.
- List ids of the teachers who specialise in 'Algorithms' or 'Data Analysis'.
- List the name of the course and the teacher id for the courses taught by teachers specialising in 'DBMS'.
- List the names of female teachers who teach course 'C105'.

Design a relational database schema for the above ER diagram.

• Give two relational database states for a relation of your choice.

- Identify entity integrity constraint which may be applied on all the relations
- Identify referential integrity constraints
- **Q5.** Consider online vaccination database with the following tables

Nurse (<u>Nurse_id</u>, Name, Age, Experience) Vaccinates (<u>Nurse_id</u>, <u>Patient_id</u>, <u>Date</u>) Patient (<u>Patient_id</u>, Patient name, Locality, Age)

Write an SQL query for each of the following:

- Display the name of the oldest nurse who has done at least one vaccination.
- Display Patient ids of patients who have been vaccinated by a nurse with an experience between 2 to 5 years.
- For each *popular* locality, print the locality along with its total number of vaccinations and the number of different dates on which vaccinations are done in that locality. (A locality is said to be *popular* if 200 or more vaccinations are done in that locality).
- Delete all the records of Nurses whose name contain the letter 'a'.
- List the number of vaccines that have been administered by each Nurse.

Q6. Consider the following functional dependencies for a relational schema:

```
Sup_Cust ( Cust_id, Cust_name, Cust_city, Sup_id, Sup_name,
{Sup_city_loc, Part_id}, Sup_city_loc, Sup_city_loc, Part_id,
Part_name, Qty )
```

Cust_id → Cust_name, Cust_city

Sup_id -> Sup_name, {Sup_city_loc, Part_id}

Sup_id, Part_id o Sup_city_loc

Part id \rightarrow Part name

Cust_id, Sup_id, Part_id \rightarrow Qty

Systematically, normalize the table **Sup_Cust** up to the third normal form (3NF). At each level of normalization, justify that the tables formed after decomposition are in a particular (1NF, 2NF or 3NF) normal form.