Name of Course	: Generic Elective CBCS (Other Than Maths. (H))
Unique Paper Code	: 32355402_OC
Name of Paper	: GE-4 Numerical Methods
Semester	: IV
Duration	: 3 hours
Maximum Marks	: 75 Marks

Attempt any four questions. All questions carry equal marks.

1. Evaluate $S = \sqrt{102} - \sqrt{101}$ up to four significant digits and find its absolute error and relative error. If δ denotes the central difference operator and μ denotes the averaging operator, then establish the following relations:

(i)
$$\sqrt{1 + \delta^2 \mu^2} = 1 + \frac{\delta^2}{2}$$

(ii) $\mu^2 = 1 + \frac{1}{4} \delta^2$.

2. Perform three iterations of the secant method to find an approximate value to the root of the equation $x^2 - 2x + 1 = 0$ starting with initial approximations $x_0 = 2.6$ and $x_1 = 2.5$. Obtain the absolute error in each of the three iterations.

Perform three iterations of Newton-Raphson method to find an approximate value of $17^{1/2}$. Take initial approximation $x_0 = 4$.

3. Solve the following system of equations using the Gaussian elimination method with row pivoting:

$$2x + y + 3z = 1$$

$$4x - 3y + 5z = -7$$

$$-3x + 2y + 4z = -3$$

Starting with the initial vector $(x_1, x_2, x_3) = (0,0,0)$, perform three iterations of the Jacobi method to solve the following system of equations:

$$2x_1 - x_2 = 7$$

-x_1 + 2x_2 - x_3 = 1
-x_2 + 2x_3 = 1.

4. Find the Lagrange form of interpolating polynomial for the function $f(x) = e^x$ passing through the points $(-1, e^{-1})$, (0,1) and (1, e). Hence estimate \sqrt{e} .

Find the interpolating polynomial using the Newton's forward difference interpolation for the following data :

x	0.1	0.2	0.3		
f(x)	-1.27	-0.98	-0.63		
H_{energy}					

Hence estimate f(0.15).

Obtain the divided difference f[a, b, c] for $f(x) = x^{-2}$.

5. Obtain the piecewise linear interpolation polynomial for the function defined by the given data:

x	0	1	16	81
f(x)	0	1	2	3

Hence interpolate at x = 15. Compare the interpolated value of f(15) with $\sqrt[4]{15}$.

Find f'(1) using the Richardson extrapolation and the approximate formula:

$$f'(x_0) = \frac{f(x_0 + h) - f(x_0 - h)}{2h}$$

with h = 1 and 0.5 from the following values:

x	0	0.5	0.75	1	1.25	1.5	2
f(x)	1	0	-0.7071	-1	-0.7071	0	1

Compare the extrapolated value of f'(1) with $\frac{d}{dx}(\cos \pi x)$ at x = 1.

6. Solve the following initial value problem over the interval from t = 0 to t = 1 with step size h = 0.5:

$$\frac{dy}{dt} = 3e^{-t} - 0.4y, \qquad y(0) = 5$$

i. Using Euler's method

ii. Using Heun's method (without iteration).

Given that the exact solution of the given problem is $y(t) = 5e^{-t}(2e^{\frac{3t}{5}} - 1)$, verify which method gives better approximation to the solution by computing absolute error in each case.