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Attempt any four questions. All questions carry equal marks.

1. For the following vectors in 3R , determine whether the first vector can be expressed as
linear combination of the other two.

4)}- 3, (-2,3),- 2,- (1,5),- 1, {(5,
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is linearly independent over 7Z .
Determine whether the set })(...,,)(),(,1{ 2 naxaxax  spans
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nn  , where a is fixed scalar.

2. Find three different bases of the subspace }04:),,{( 321
3

321  aaaRaaaW of 3R .
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)( dim 21 WW  and )( dim 21 WW  .

3. Let ℳ2(ℤ) denote the ring of all 2�2 matrices with integer entries. Show that ℳ2(5ℤ) is
an ideal of the ring ℳ2(ℤ).
Write all the elements of the quotient ring ℳ2(ℤ)

ℳ2(5ℤ)
.

Find all idempotent elements, nilpotent elements, units and zero divisors of the ring ℤ2⊕ ℤ4.

4. Let ℤ[�] denote the ring of polynomials with integer coefficients and let � = � � ∊
ℤ � ���ℎ �ℎ�� � �� �� ���� ������� . Prove that � =< �, 2 > . Further prove that I is a
prime ideal as well as a maximal ideal of the ring ℤ � .
Show that � 2 and � 3 are not isomorphic rings.

5. If 22: RRT  be a linear transformation for which )3,2()1,1( and)2,1()1,1(  TT
then what is ?)5,1(T
Let 33: RRT  be a linear transformation defined by

.,,),2,,3(),,( 321321211321 RxxxxxxxxxxxxT 
Find a basis for Range space and and a basis for Null space of T and verify Dimension
Theorem. Is T one-one? Is T onto? Is T invertible ? If so, find T−1.
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A be the matrix of linear operator T on ,3R w. r. t. standard ordered

basis .
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 be another basis of ,3R

find a matrix .   t.r.  w. of TB Find a non-singular matrix Q such that
AQQB 1 .


