Name of the Course	: B.Sc. (Hons.) Mathematics CBCS
Semester	: IV
Unique Paper Code	: 32351402_OC
Name of the Paper	: C9 - Riemann Integration and Series of Functions
Duration: 3 Hours	Maximum Marks: 75

Attempt any four questions. All questions carry equal marks. All symbols have usual meaning.

1. Calculate the upper Darboux sum and lower Darboux sum of the function

$$f(x) = \frac{1}{x^2}$$
 and $g(x) = xe^x$ on the interval [1, 2] for a partition

 $P = \{1, 1.25, 1.5, 1.75, 2\}.$

Calculate upper and lower Darboux integral of $g(x) = x^2 + 5$ on [2,4]. Is g integrable ?

Let $f:[a,b] \to R$ be a bounded function. Suppose that there is a partition P of [a,b] such that

$$L(f, P) = U(f, P).$$

Show that f is a constant function.

2. Define f(x) = x[x] on [0, 4]. Show that f is integrable, and evaluate $\int_0^4 f(x) dx$. Give an example where the functions f and g are not Riemann integrable, but $f \cdot g$ is integrable. Let f be a continuous function on R and define

$$F(x) = \int_0^{\frac{x^4}{4}} f(t)dt \quad \text{for } x \in R$$

show that F is differentiable on R and compute F'.

3. Examine the convergence of following improper integrals

$$\int_{0}^{\infty} e^{-x} (3x+2)dx \quad and \quad \int_{0}^{\infty} \frac{dx}{\sqrt{3x^{4}+5x}}$$

Using the properties of Gamma integral find the value of
$$\int_{0}^{\infty} x^{5} e^{-4x^{2}} dx$$

4. Let (f_n) be defined by $f_n(x) = 1 - |1 - x^2|^n \forall x \in [-\sqrt{2}, \sqrt{2}]$ Find the pointwise limit of (f_n) on $[-\sqrt{2}, \sqrt{2}]$. Does the sequence converge uniformly on this interval? Justify your answer. Show that the sequence (f_n) where $f_n(x) = nxe^{-nx^2}$, $x \ge 0$ is not uniformly convergent on [0, 2]. Show that the sequence $\{\frac{\sin(n^2x^2+1)}{n(n+1)}\}$ converges uniformly on *R*.

5. Examine the convergence of the series of functions $\sum f_n$ where $f_n(x) = \frac{1}{1+x^n}$ and show that convergence is non uniform in $(1, \infty)$ and is uniform in $[a, \infty)$, a > 1

Show that $\sum_{n=1}^{\infty} \frac{\cos nx}{n^3}$ converges uniformly on *R* to a continuous function. Evaluate the integral $\int_0^1 \sum_{n=1}^{\infty} \frac{x}{(n+x^2)^2} dx$

6. Find the radius of convergence and exact interval of convergence for the following power series

$$\sum_{0}^{\infty} \frac{4^{n}}{n5^{n+2}} (x-2)^{n}$$
 and $\sum_{0}^{\infty} \left[\frac{3+5(-1)^{n}}{7}\right]^{n} x^{n}$

Write the power series expansion for the integral of the following function:

$$f(x) = \frac{x^2}{3 - x^3} ,$$

ⁿ , x \in]-1,1[.

given that $\frac{1}{1-x} = \sum_{0}^{\infty} x^{n}$