Unique Paper Code	: 32171202_OC
Name of the Paper	: Physical Chemistry II: Chemical Thermodynamics and its Applications
Name of the Course	: B.Sc.(H) Chemistry
Semester	: II
Duration	: 3 hours
Maximum Marks	: 75

Instructions for Candidates:

i. Following details must be written on first page:

- University Roll No.:
- Unique Paper Code:
- Name:
- Class:
- Course:
- Semester:
- Paper Name:
- ii. Put page numbers on every page of the answer script.
- iii. Attempt any four questions in all. Q. No.- 1 is compulsory.
- iv. Marks are mentioned at the end of each question.
- v. Attempt all parts of a question together.
- 1. Attempt any seven questions and give answers in brief.
 - (a) Does the equilibrium constants for reaction in solution is effected by the solvent?
 - (b) Addition of a non-volatile solute lowers the freezing point and elevates the boiling point of a solvent. Explain.
 - (c) Prove C_p - C_v = $VT\alpha^2/\kappa$
 - (d) Q is not a state function but become state function under certain conditions. Explain.
 - (e) If a steam engine is supplied 4000 J of heat and it performs 1000 J of work. Account for the rest of 3000 J of heat.
 - (f) Why with increase of pressure the melting point would decrease for Ice
 ↔ Water equilibrium.
 - (g) For the equilibrium $CO(g)+H_2O(g)\leftrightarrow CO_2(g)+H_2(g)$. What is the effect of pressure in this equilibrium?
 - (h) The observed value ΔH_f° for benzene is 82.9 kJ mol⁻¹ while from theoretical calculation it was $\Delta H_f^{\circ} 256$ kJ mol⁻¹. Account for the great difference of 173 kJ mol⁻¹.
 - (i) Why, Joule-Thomson coefficient negative value corresponds to warming (3×7) on expansion.
- 2. (a) One mole of an ideal gas at 300K and 10^{6} Pa expands to 10^{5} Pa. Calculate W, Q, U, H for:

- i. Isothermal Reversible
- ii. Isothermal Irreversible
- iii. Adiabatic Reversible
- iv. Adiabatic Irreversible
- (b) Prove, $TV^{\gamma-1}$ = constant PV^{γ} = constant
- (c) Define Kirchhoff's Law. The heat of dissociation per mole of gaseous water at 18°C and 1 atm is 241750 J. Calculate its value at 63°C. Given that: $C_p(H_2O)=33.565 \text{ J K}^{-1} \text{ mol}^{-1}$ $C_p(H_2)=28.83 \text{ J K}^{-1} \text{ mol}^{-1}$ $C_p(O_2)=29.12 \text{ J K}^{-1} \text{ mol}^{-1}$ (6×3)
- **3.** (a) i. State second law of thermodynamics and prove entropy is a state function.
 - ii. Calculate the entropy change when $10 dm^3$ of an ideal gas at $27^{\circ}C$ is heated to $127^{\circ}C$ at constant pressure of 1.01×10^5 Nm⁻². Given that, $C_{p,m}=2.5R$.

(b) i. Prove,
$$-\Delta G = -W_{net}$$

ii. Prove, Gibbs- Helmholtz equation $(G/T)_P = -\int H/T^2 dT + I$

- (c) i. Prove that isothermal reversible work of expansion is always greater in magnitude than that of irreversible expansion of an ideal gas.
 - ii. Define Hess's law of constant heat summation and explain its (6×3) application.
- 4. (a) i. Prove Gibbs-Duhem equation.
 ii. Derive the formula for effect of temperature on chemical potential.
 - (b) i. What are limitations of ideal solubility law. ii. Calculate the ΔG_{mixing} , ΔH_{mixing} , ΔS_{mixing} at 25°C and 1 atm. When 10 moles of Helium are mixed with 10 moles of Neon.
 - (c) i. Explain the effect on RBC when they are placed in hypotonic and hypertonic solution.
 - ii. 0.45g of glucose of molecular weight 180g is placed inside a tube of unit area of cross section and closed at one end with a semipermeable membrane. The tube is kept in water at 27°C. Calculate, the height of solution inside the tube when equilibrium is attained and the osmotic pressure. Given that, density of (6×3) solution =1.017 g cm⁻³ and g = 98 cm s⁻²
- 5. (a) i. Derive Van't Hoff equation in the form

$dlnK_p/dT = -\Delta H^{\circ}/RT^2$

- ii. For a reaction $X_2 \rightarrow 2X$, the equilibrium constant at 1225 K is 3.28×10^{-3} and the reaction is exothermic by 216.7 kJ mol⁻¹. Calculate ΔG° and ΔS° for the reaction at 1225 K.
- (b) i. At 480 K and pressure of 1atm, a mixture consisting of N_2 and H_2 in the mole ratio of 1:3 contains 16% NH₃ at equilibrium. Calculate K_p for the reaction.
 - ii. Drive relationship between K_p, K_c and K_x
- (c) i. Define Raoult's law and Henry's law. What are limitations of Henry's law?
 - ii. A solution of 1.0×10^{-2} kg of sodium chloride in 1000g freezes at -0.604°C. The molal depression constant of water K_f is 1.85 K kg mol⁻¹. Calculate the degree of dissociation of sodium chloride. (6×3)

 (0×3)

- 6. (a) i. Define integral heat of solution, integral heat of dilution and integral heat of infinite dilution. Distinguish between them by taking an example.
 - ii. Calculate the enthalpy change for the reaction: $C_2H_4(g) + Br_2(g) \leftrightarrow C_2H_4Br_2(g)$

The bond enthalpy of $\Delta H^{\circ}_{C-H} = 415 \text{ kJmol}^{-1}, \Delta H^{\circ}_{C=C} = 610 \text{ kJmol}^{-1}, \Delta H^{\circ}_{C-C} = 348 \text{ kJmol}^{-1}, \Delta H^{\circ}_{C-Br} = 276 \text{ kJmol}^{-1}, \Delta H^{\circ}_{Br-Br} = 193 \text{ kJ mol}^{-1}.$

- (b) Define Le Chatelier'sPrinciple. What are the effects of pressure, temperature, concentration and catalyst on chemical equilibrium? Explain it by taking an example.
- (c) i. Derive thermodynamic equation of boiling point elevation on addition of non-volatile solute in a solvent.
 - ii. The boiling point of chloroform was raised by 0.325 K when 5.141×10^{-4} kg of anthracene was dissolved in 3.5×10^{-2} kg of chloroform. Calculate the molar mass of solute. K_b= 3.9 K kg (6×3) mol⁻¹.