Name of the Course:
Unique Paper Code:
Name of the Paper:
Semester:
Duration:
Maximum Marks:

LOCF B.Sc. (H)Mathematics
32357501
DSE-1 (i) Numerical Analysis
V
3 hours
75 Marks

Attempt any four questions. All questions carry equal marks.

1. (a) Find the smallest positive root of the given equation by performing three iterations of the Bisection method

$$
f(x)=e^{x}-3 \mathrm{x}=0 .
$$

(b) Apply four iterations of the Fixed Point Iteration Method to find an approximate root of the following equation by taking the initial approximation as $p_{0}=0$

$$
f(x)=3 x-(1+\cos x)=0 .
$$

Also represent the root graphically.
(c) Find LU decomposition for the matrix

$$
A=\left(\begin{array}{ccc}
3 & 1 & 2 \\
2 & -3 & -1 \\
1 & -2 & -1
\end{array}\right)
$$

and then solve the system

$$
\begin{gathered}
3 x+y+2 z=4 \\
2 x-3 y-z=-6 \\
x-2 y-z=-4
\end{gathered}
$$

2. (a)Set up the Gauss-Seidel iteration scheme for the following system of equations

$$
\begin{gathered}
2 x-y+2 z=3 \\
x+3 y+3 z=-1 \\
x+2 y+5 z=1
\end{gathered}
$$

and iterate three times starting with the initial vector $X^{(0)}=(0,0,0.5)^{T}$.
(b) Apply Secant method to find a root of the equation

$$
\ln (1+\mathrm{x})-\frac{1}{2} \cos x=0
$$

$(0,1)$. Perform three iterations.What order of convergence do you expect?
(c)Solve the following system of equations using SOR iteration method

$$
5 x_{1}+x_{2}-2 x_{3}=2
$$

$$
\begin{gathered}
3 x_{1}+4 x_{2}-x_{3}=-2 \\
2 x_{1}-3 x_{2}+5 x_{3}=10
\end{gathered}
$$

Take $w=0.9$ with $X^{(0)}=(0,0,0)^{T}$ and iterate three times.
3. (a) Find a polynomial of degree 3 or less passing through the points $(-1,9),(0,5),(1,3)$ and $(2,1)$ using Lagrange interpolation. Use this polynomial to estimate the ordinate for $x=1.5$.
(b) Use central difference formula to approximate $f^{\prime}(0.5)$ for the function $f(x)=4 e^{-2 x}$ by taking two step sizes $h=0.1$ and 0.05 . What is the order of approximation?
4. (a) Derive the following approximation of function $f^{\prime}\left(x_{0}\right)$ for an arbitrary function $\mathrm{f}(\mathrm{x})$:

$$
f^{\prime}\left(x_{0}\right)=\frac{-3 f_{0}+4 f_{1}-f_{2}}{2 h}
$$

Hence show that the above approximation provides exact value of the first order derivatives for $f(x)=1, x$ and x^{2} but not for $f(x)=x^{3}$.
(b) Determine the step size h in an equidistant table for $f(x)=\sin x$ in $[0, \pi / 4]$, if the error in magnitude in quadratic interpolation is less than or equal to 5×10^{-8} in magnitude.
(c) Obtain the piecewise linear interpolating polynomials for the function $f(x)$ defined by the given data.

X	0.5	1.5	2.5
$f(x)$	0.125	3.375	15.625

Interpolate at $x=1.0$ and 2.0.
5. (a) Approximate the value of the given integral by Simpson's $1 / 3$ rule and the Trapezoidal rule

$$
\int_{0}^{3} \frac{1}{4+x^{2}} \mathrm{dx} .
$$

Calculate the difference between the actual value and the approximate value.Also find the error term for both.
(b)Apply the Newton Raphson Method to find a root of the equation
$\mathrm{f}(\mathrm{x})=x^{3}-x^{2}-10 x+6=0$. Perform three iterations with $x_{0}=1$.

6 (a) Construct the Richardson extrapolation table to find the derivative of the function $f(x)=\tan ^{-1} x$ at $x_{0}=3$ using the first-order forward difference approximation

$$
D_{h}^{(1)}=\frac{f\left(x_{o}+h\right)-f\left(x_{o}\right)}{h}
$$

taking $\mathrm{h}=1,0.5,0.25,0.125$.
(b) Apply the Modified Euler method to find approximate solution of the following initial value problem with four numbers of steps
$\frac{d y}{d x}=x y, \quad(1 \leq x \leq 2), \quad y(1)=1$.

Also compare with the exact solution.

