Name of Course	$:$ CBCS(LOCF) B.Sc. (H) Mathematics
Unique Paper Code	$: \mathbf{3 2 3 5 1 5 0 1}$
Name of Paper	$:$ BMATH511-Metric Spaces
Semester	$:$ V
Duration	$: \mathbf{3}$ hours
Maximum Marks	$: \mathbf{7 5}$ Marks

Attempt any four questions. All questions carry equal marks.

1. Let $X=C[0,2]$, the space of all continuous functions defined on $[0,2]$. Let

$$
d_{1}(f, g)=\int_{0}^{2}|f(x)-g(x)| d x \text { and } d_{\infty}(f, g)=\sup \{|f(x)-g(x)|: x \in[0,2]\}
$$

Compute the distance $d_{1}(f, g)$ and $d_{\infty}(f, g)$ where

$$
f(x)=\left\{\begin{array}{l}
\sin x: 0 \leq x<\frac{\pi}{4} \\
\frac{1}{\sqrt{2}}: \frac{\pi}{4} \leq x \leq 2
\end{array} \text { and } g(x)=\left\{\begin{array}{c}
\cos x: 0 \leq x<\frac{\pi}{4} \\
\frac{1}{\sqrt{2}}: \frac{\pi}{4} \leq x \leq 2
\end{array} .\right.\right.
$$

Let X be any non-empty subset of \mathbb{R}. Define a function $d: X \times X \rightarrow[0, \infty)$ as

$$
d(x, y)= \begin{cases}|x-y|, & \text { if }|x-y| \leq 1 \\ 1, & \text { if }|x-y| \geq 1\end{cases}
$$

Show that d is a metric on X and d is bounded.

Let $X=\mathbb{R}^{3}$ and d be the metric on \mathbb{R}^{3} given by $d(x, y)=\sum_{i=1}^{3}\left|x_{i}-y_{i}\right|$ where $x=\left(x_{1}, x_{2}, x_{3}\right)$ and $y=\left(y_{1}, y_{2}, y_{3}\right)$. Let $\left\{x^{(n)}\right\}$ be a sequence in \mathbb{R}^{3} where $x^{(n)}=\left(\frac{n}{n+1}, \frac{1}{n^{3}}, 1-\frac{1}{n}\right), n \in \mathbb{N}$. Is $\left\{x^{(n)}\right\}$ convergent in \mathbb{R}^{3} ? If yes, find the limit.

Is $d(x, y)=|x-y|^{3}$ a metric on $\mathbb{R} ?$ Justify your answer.
2. Let $a, b \in \mathbb{R}$ and $a<b$. Show that the open interval (a, b) is an incomplete subspace of \mathbb{R}. Let Y be a finite subset of \mathbb{R} with usual metric. Is Y open in \mathbb{R} ? Justify. If not, then give an example of a metric space in which a finite set may be open.

Let $\left(C[0,1], d_{1}\right)$ be a metric space with the metric defined by

$$
d_{1}(f, g)=\int_{0}^{1}|f(x)-g(x)| d x
$$

Let $\left\{h_{n}\right\}$ be a sequence in $C[0,1]$ defined by

$$
h_{n}(x)=x^{1 / n}, \quad x \in[0,1]
$$

Show that $h_{n} \rightarrow h$ in $\left(C[0,1], d_{1}\right)$, where $h(x)=1$ for all $x \in[0,1]$. Does the same statement hold in $\left(C[0,1], d_{\infty}\right)$ where $d_{\infty}(f, g)=\sup \{|f(x)-g(x)|: x \in[0,1]\}$? Justify .

Give an example of a set which is neither open nor bounded. Justify your answer.
3. Find the closure and interior of the set $A=\{(x, y): x y=1\}$ as a subset of \mathbb{R}^{2} (equipped with the Euclidean metric).

If D is an open subset of \mathbb{R}, which contains all rational numbers lying between 0 and 2 , then does $\sqrt{2} \in D$? Justify your answer.

Consider the set $X=A_{1} \cup A_{2}$, where $A_{1}=(0,1)$ and $A_{2}=[2,3)$. Show that A_{1} and A_{2} are both open as well as closed in X.

Let (X, d) be a metric space and $B=S\left(x_{0}, r\right)$ be the open ball with centre at $x_{0} \in X$ and radius $r>0$. Show that $d(B) \leq 2 r$, where $\mathrm{d}(\mathrm{B})$ denotes the diameter of the set B . Give an example to show that in general the equality may not hold in $d(B) \leq 2 r$.
4. Let d denote the Euclidean metric in \mathbb{R}^{2} and d_{1} be the metric defined in \mathbb{R}^{2} by

$$
d_{1}(\mathrm{x}, \mathrm{y})=\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right| \quad \text { for } \quad \mathrm{x}=\left(x_{1}, x_{2}\right), \mathrm{y}=\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}
$$

Let $f:\left(\mathbb{R}^{2}, d\right) \rightarrow\left(\mathbb{R}^{2}, d_{1}\right)$ be given by $f\left(x_{1}, x_{2}\right)=\left(2 x_{1}, x_{2}\right)$. Prove that f is continuous on \mathbb{R}^{2}.
Let \mathbb{R} be equipped with the usual metric and $g: \mathbb{R} \rightarrow \mathbb{R}$ be continuous. Let $A=\{x \in \mathbb{R}: g(x) \geq$ $0\}$. Show that A is closed in \mathbb{R}. Is A complete with respect to the induced metric?

For the subset $E=\left\{\left((-1)^{n} \frac{1}{n},(-1)^{n}\right): n \in \mathbb{N}\right\}$ of \mathbb{R}^{2} (equipped with the Euclidean metric), find \bar{E}.

Let (X, d) and (Y, ρ) be two metric spaces and $h: X \rightarrow Y$ be a bijection. Show that h is a homeomorphism if and only if for all subsets A of X,

$$
h(\bar{A})=\overline{h(A)}
$$

5. Let $X=(-1,1)$ and $Y=(0,1)$ be subsets of the usual metric space \mathbb{R}. Are the spaces X and Y homeomorphic to each other? Justify your answer. What if we take $X=\mathbb{R}$ and $Y=(0,1)$? Justify your answer.

Show that isometry from $\left(X, d_{X}\right)$ into $\left(Y, d_{Y}\right)$ is injective. Is every isometry from $\left(X, d_{X}\right)$ onto $\left(Y, d_{Y}\right)$ is a homeomorphism? Justify.

Prove that every contraction map on a metric space is uniformly continuous.
Let \mathbb{R}^{2} be the Euclidean metric space. If $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a map defined by $T(x, y)=(x, 0)$. Prove or disprove that T is a contraction map. Also, find the fixed point(s) of T.
6. Let A and B be two connected subsets of X and $A \cap B \neq \phi$. Show that $A \cup B$ is connected. In \mathbb{R}^{2} (eqquiped with the Euclidean metric), find if the union of $A=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$ and $B=\left\{(x, y):(x-2)^{2}+y^{2}<1\right\}$ is connected or not? Justify.

Let (X, d) be a compact metric space and let d_{1} be the metric on X defined by

$$
d_{1}(x, y)=\min \{1, d(x, y)\}, \quad x, y \in X
$$

Then prove that $\left(X, d_{1}\right)$ is compact.

Prove that every continuous real valued function f on a compact metric space attains its infimum.
Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=\frac{1}{1+x^{2}}$. Find the infimum of f. Is the above statement applicable for $f(x)=\frac{1}{1+x^{2}}$? Justify.

Examine the compactness of the set $B=\left\{(x, y) \in \mathbb{R}^{2}: x=0\right\}$.

