<u>Set – A</u>

S. No. of Question Paper :

Unique Paper Code : 32227519

Name of the Paper : Linear Algebra and Tensor Analysis (DSE)

Name of the Course : **B.Sc. (Hons) Physics CBCS**

Semester : V

Duration: **3 + 1 hours** Maximum marks: **75**

Attempt any four questions. All questions carry equal marks.

1. (a) Assume that A, I - A, $I - A^{-1}$ are all non-singular matrices, where I is an identity matrix. Show that

$$(I-A)^{-1} + (I-A^{-1})^{-1} = I$$

(b) Determine the values of λ and μ so that the following system has (i) unique solution, (ii) infinitely many solutions and (iii) no solution.

$$x + y + z = 6$$

$$x + 2y + 3z = 10$$

$$x + 2y + \lambda z = \mu$$

(c) Solve the following system of coupled differential equations using matrix method.

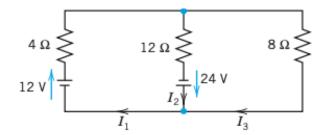
$$y_1' = y_2$$

$$y_2' = y_2$$

$$y_3' = 2y_1 + y_2 - 2y_3$$
subject to $y_1(0) = 1, y_2(0) = 0, y_3(0) = 1$

$$(4.75 + 6 + 8)$$

2. (a) Consider the circuit given below. Calculate the currents in the circuit using Gauss elimination method.



- (b) Given that the three vectors $\alpha_1 = (1, 1, 0)$, $\alpha_2 = (2, 1, 0)$ and $\alpha_3 = (1, 1, 1)$ form a basis for R^3 , construct an orthonormal basis for R^3 using Gram Schmidt orthogonalization process.
- (c) Calculate the inverse of the following matrix using row reduction method.

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ 0 & -1 & 1 \end{bmatrix}$$
(8.75 + 6 + 4)

- 3. (a) For what value of k will the vector (1, -2, k) belong to the subspace of \mathbb{R}^3 spanned by the vectors (3, 0, 2) and (2, -1, -5)?
 - (b) Let V be the vector space of all 2×2 matrices over the real field R. Is the subset W consisting of all matrices A for which $A^2 = A$ a subspace of V?
 - (c) A linear transformation T on \mathbb{R}^3 is defined as:

$$T\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2x - 3y + 4z \\ 5x - 2y + 2z \\ 4x + 7y \end{bmatrix}$$

Find the matrix representation of *T* relative to:

i. the standard basis

ii. the basis
$$\left\{ \alpha_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \ \alpha_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \ \alpha_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right\}$$

- iii. matrix of transition from standard basis to α -basis. Also show that the matrices with respect to the two set of bases are related to each other by a similarity transformation. (4+4+10.75)
- 4. (a) Check whether $G = \left\{ \begin{bmatrix} a & a \\ a & a \end{bmatrix} ; a \text{ is } non-zero \text{ real number} \right\}$ is a group with respect to matrix multiplication.

- (b) Let V be the space of 2×2 matrices over \mathbb{R} , and let $M = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$. Let T be the linear operator on V defined by T(A) = MA. Find the trace of T.
- (c) Prove that the components of a strain tensor are given as

$$e_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_i} + \frac{\partial u_j}{\partial x_i} \right)$$

where u_i is a displacement vector.

A displacement field in a body is given by:

$$u = c(x^{2} + 10)$$
$$v = 2cyz$$
$$w = c(-xy + z^{2})$$

where $c = 10^{-4}$. Determine the state of strain on an element positioned at (0, 2, 1). (4+6+8.75)

- 5. (a) Show that $L^2 = g_{ij}A^iA^j$ is an invariant. Also show that $L^2 = g^{ij}A_iA_j$.
 - (b) Prove the following using tensors:

i.
$$curl(\vec{A} \times \vec{B}) = \vec{A} div \vec{B} - \vec{B} div \vec{A} + (\vec{B} \cdot \vec{\nabla}) \vec{A} - (\vec{A} \cdot \vec{\nabla}) \vec{B}$$

ii. $(\vec{A} \times \vec{B}) \cdot (\vec{C} \times \vec{D}) + (\vec{B} \times \vec{C}) \cdot (\vec{A} \times \vec{D}) + (\vec{C} \times \vec{A}) \cdot (\vec{B} \times \vec{D}) = 0$

$$(8.75 + 10)$$

- 6. (a) Find the condition for two lines to intersect and the equation of the plane in which they lie using tensor notation.
 - (b) Show that the only isotropic tensor of rank 2 is a scalar multiple of Kronecker delta. (6.75 + 12)