Set-A

S. No. of Question Paper :

Unique Paper Code : 32227519

Name of the Paper : Linear Algebra and Tensor Analysis (DSE)
Name of the Course : B.Sc. (Hons) Physics CBCS

Semester : V

Duration: $\mathbf{3 + 1}$ hours
Maximum marks: 75

Attempt any four questions. All questions carry equal marks.

1. (a) Assume that $A, I-A, I-A^{-1}$ are all non-singular matrices, where I is an identity matrix. Show that

$$
(I-A)^{-1}+\left(I-A^{-1}\right)^{-1}=I
$$

(b) Determine the values of λ and μ so that the following system has (i) unique solution, (ii) infinitely many solutions and (iii) no solution.

$$
\begin{gathered}
x+y+z=6 \\
x+2 y+3 z=10 \\
x+2 y+\lambda z=\mu
\end{gathered}
$$

(c) Solve the following system of coupled differential equations using matrix method.

$$
\begin{gathered}
y_{1}{ }^{\prime}=y_{2} \\
y_{2}{ }^{\prime}=y_{2} \\
y_{3}{ }^{\prime}=2 y_{1}+y_{2}-2 y_{3}
\end{gathered}
$$

subject to $y_{1}(0)=1, y_{2}(0)=0, y_{3}(0)=1$ $(4.75+6+8)$
2. (a) Consider the circuit given below. Calculate the currents in the circuit using Gauss elimination method.

(b) Given that the three vectors $\alpha_{1}=(1,1,0), \alpha_{2}=(2,1,0)$ and $\alpha_{3}=(1,1,1)$ form a basis for R^{3}, construct an orthonormal basis for R^{3} using Gram Schmidt orthogonalization process.
(c) Calculate the inverse of the following matrix using row reduction method.

$$
A=\left[\begin{array}{ccc}
1 & 2 & 3 \tag{8.75+6+4}\\
2 & -1 & 4 \\
0 & -1 & 1
\end{array}\right]
$$

3. (a) For what value of k will the vector $(1,-2, k)$ belong to the subspace of $\boldsymbol{R}^{\mathbf{3}}$ spanned by the vectors $(3,0,2)$ and $(2,-1,-5)$?
(b) Let V be the vector space of all 2×2 matrices over the real field R. Is the subset W consisting of all matrices A for which $A^{2}=A$ a subspace of V ?
(c) A linear transformation T on R^{3} is defined as:

$$
T\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
2 x-3 y+4 z \\
5 x-2 y+2 z \\
4 x+7 y
\end{array}\right]
$$

Find the matrix representation of T relative to:
i. the standard basis
ii. the basis $\left\{\alpha_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right], \alpha_{2}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right], \alpha_{3}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right\}$
iii. matrix of transition from standard basis to α-basis. Also show that the matrices with respect to the two set of bases are related to each other by a similarity transformation.

$$
(4+4+10.75)
$$

4. (a) Check whether $\mathrm{G}=\left\{\left[\begin{array}{ll}a & a \\ a & a\end{array}\right]\right.$; a is non-zero real number $\}$ is a group with respect to matrix multiplication.
(b) Let V be the space of 2×2 matrices over \mathbf{R}, and let $M=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$. Let T be the linear operator on V defined by $T(A)=M A$. Find the trace of T.
(c) Prove that the components of a strain tensor are given as

$$
e_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)
$$

where u_{i} is a displacement vector.
A displacement field in a body is given by:

$$
\begin{gathered}
u=c\left(x^{2}+10\right) \\
v=2 c y z \\
w=c\left(-x y+z^{2}\right)
\end{gathered}
$$

where $c=10^{-4}$. Determine the state of strain on an element positioned at $(0,2,1)$.

$$
(4+6+8.75)
$$

5. (a) Show that $L^{2}=g_{i j} A^{i} A^{j}$ is an invariant. Also show that $L^{2}=g^{i j} A_{i} A_{j}$.
(b) Prove the following using tensors:
i. $\quad \operatorname{curl}(\vec{A} \times \vec{B})=\vec{A} \operatorname{div} \vec{B}-\vec{B} \operatorname{div} \vec{A}+(\vec{B} \cdot \vec{\nabla}) \vec{A}-(\vec{A} \cdot \vec{\nabla}) \vec{B}$
ii. $\quad(\vec{A} \times \vec{B}) \cdot(\vec{C} \times \vec{D})+(\vec{B} \times \vec{C}) \cdot(\vec{A} \times \vec{D})+(\vec{C} \times \vec{A}) \cdot(\vec{B} \times \vec{D})=0$
6. (a) Find the condition for two lines to intersect and the equation of the plane in which they lie using tensor notation.
(b) Show that the only isotropic tensor of rank 2 is a scalar multiple of Kronecker delta.
