Name of the Department:	PHYSICS DEPARTMENT
Name of Course:	B.Sc. Hons._CBCS_Core (NC)
Semester:	V-Semester
Name of the Paper:	Quantum Mechanics and Applications
Unique Paper Code:	32221501
Time Duration: 3 Hours	
Attempt four questions out of six. Each question carries equal marks.	

1.

i. A particle is represented at $(\mathrm{t}=0)$ by the wave function:

$$
\psi(x, 0)=\left\{\begin{array}{cc}
A\left(a^{2}-x^{2}\right)-a \leq x \leq a \\
0 & \text { otherwise }
\end{array}\right.
$$

Find A and expectation value of x, x^{2}, p and p^{2}. Find uncertainties in position and momentum.
ii. Show that Divergence of J (probability current density) is zero for stationary states.
iii. Find the Fourier transform of the wave function $e^{-a x^{2}}$.
2.
i. State Heisenberg's Uncertainty principle. What is the origin of concept of uncertainty in position and momentum? Derive $\Delta x \Delta p \geq \hbar / 2$.
ii. Verify whether the following operators are linear:
$\begin{array}{rlrl}\text { a. } & & \overline{f(x)} & =\frac{d}{d x} f(x) \\ \text { b. } & \overline{f(x)} & =\sqrt{f(x)}\end{array}$
iii. What is uncertainty in the location of a photon of wavelength 5000 Angstrom which is known to an accuracy of one part in 10^{7} ?
$(12.75+3+3)$
3.
i. Solve Schrodinger's equation for the potential energy $V=(1 / 2) k x^{2}$ and show that the energy eigenvalue are $E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega$.
ii. Which of the following wave functions

$$
\text { (i) } e^{-a x^{2}} \text { (ii) } \sin (k x)
$$

are eigenvalues of operator (a) p and (b) p^{2}.
iii. Find the locations of classical turning points for a One Dimensional Harmonic Oscillator in its ground state.
(12.75+4+2)
4.
i. Describe the Stern-Gerlach Experiment and its theory. Discuss the significance of the experiment. Why is an inhomogeneous magnetic field required?
ii. A beam of silver atoms moving with a velocity of $10^{5} \mathrm{~cm} / \mathrm{s}$ passes through a magnetic field of gradient $0.50 \mathrm{~Wb} / \mathrm{m}^{2} / \mathrm{cm}$ for a distance of 10 cm . Determine acceleration of Ag atoms, time spent by atoms in the field and displacement of Ag atoms along z -direction as it comes out of the magnetic field (along z-axis).
iii. Show that $\frac{d}{d t} \int_{-\infty}^{\infty} \psi_{1}^{*} \psi_{2} d x=0$ for any two (normalizable) solutions to Schrodinger's equation, ψ_{1} and ψ_{2}.
5.
i. Derive an expression for energy difference $\Delta \mathrm{E}$ between doublets due to Spin-Orbit coupling. How does ΔE depend on quantum numbers n and I?
ii. Show that the angle between angular momentum (L) and z -axis is given by $\theta_{m_{l}}=\cos ^{-1}\left(\frac{m_{l}}{\sqrt{l(l+1)}}\right)$. Find the values of angle $\theta_{m_{l}}$ for $\mathrm{l}=2$.
iii. Calculate the probability of finding the electron in the region $\frac{a_{0}}{2}<r<$ $2 a_{0}$ in a hydrogen atom in ground state given that wave function for
the ground state of Hydrogen atom is $\psi(r)=\frac{1}{\sqrt{\pi a_{0}^{3}}} e^{\frac{-r}{a_{0}}}$, where $a_{0}=$ $\frac{4 \pi \epsilon_{0} \hbar^{2}}{m e^{2}}$.
$(12.75+3+3)$
6.
i. Solve 1-D time independent Schrodinger's equation for a particle having energy E for a square well of finite depth $V_{0}\left(E<V_{0}\right)$. Show graphically existence of bound states.
ii. An electron moves in 1-D potential well of width 8 Angstrom and depth 12 eV . Find the number of bound states?
iii. Assuming LS coupling scheme, list the possible total angular momentum and spectral terms for three electron having configuration 2p 3p 4d.
$(12.75+3+3)$

Physical Constants:

Mass of Ag atom $=107.87 \mathrm{amu}$,
Charge of electron $=1.6 \times 10^{-19} \mathrm{C}$,
$\mathrm{h}=6.626 \times 10^{-34} \mathrm{Js}$
Mass of electron $=9.1 \times 10^{-31} \mathrm{Kg}$.

