Name of Course	$:$ B.Sc. (H) Mathematics CBCS (LOCF)
Unique Paper Code	$: 32351303$
Name of Paper	$:$ BMATH307 - Multivariate Calculus
Semester	$:$ III
Duration	$: 3$ hours
Maximum Marks	$: 75$ Marks

Attempt any four questions. All questions carry equal marks.

1. Let $f(x, y)= \begin{cases}\frac{x y+y^{3}}{x^{2}+y^{2}}, & (x, y) \neq(0,0), \\ 0, & (x, y)=(0,0) .\end{cases}$
(a) Show that $f_{x}(0,0)$ and $f_{y}(0,0)$ both exist but f is not differentiable at $(0,0)$.
(b) Find the rate of change of f at the point $P(2,0)$ in the direction from P to $Q\left(\frac{1}{2}, 2\right)$.
(c) Find the direction in which f decreases most rapidly and increases most rapidly at the point $(2,1)$.
(d) Find the tangent plane to the given surface $z=f(x, y)$ at the point $(0,2,2)$.
2. Let $f(x, y)=x^{2}-4 x y+y^{3}+4 y$.
(a) Find the absolute extrema of $f(x, y)$ on the closed bounded rectangular region $0 \leq x \leq 3,0 \leq y \leq 2$
(b) Use the method of constrained optimization to find the largest and the smallest value of $f(x, y)$ subject to the constraint $x+y=2$.
(c) Compare the results obtained in parts (a) and (b) and interpret it.
3. (a) Let R be the region which lies between two squares of sides 2 and 4 with center at the origin and sides parallel to the coordinate axes. Compute the double integral $\iint_{R} e^{x+y} d A$.
(b) Evaluate

$$
\iint_{D} \sin ^{2}(x+y) d y d x
$$

where D is the parallelogram with vertices $(0, \pi),(\pi, 0),(\pi, 2 \pi),(2 \pi, \pi)$.
(c) Compute $\iiint_{D} \frac{z}{(x-1)^{2}+(y-1)^{2}} d V$, where D is the solid bounded by the surface $(x-1)^{2}+(y-1)^{2}=2 z$ and the plane $z=2$.
4. Let the vector field \vec{F} be given as

$$
\vec{F}(x, y, z)=\left(y^{2} \cos x+z^{3}\right) \hat{i}+(2 y \sin x-4) \hat{j}+\left(3 x z^{2}+2\right) \hat{k}
$$

(a) Show that \vec{F} is conservative.
(b) Find the scalar potential for \vec{F}.
(c) What will be the work done in moving an object in this force field from the point $P(0,1,-1)$ to the point $Q\left(\frac{\pi}{2},-1,2\right)$.
(d) If the path P to Q is traversed through ten additional in between points then what will be the effect on the work done. Give reason for your answer.
(e) Evaluate $\int_{C} \vec{F} \cdot d \vec{R}$, where C is the line segment $x=1, y=1,0 \leq z \leq 1$.
5. Let D be a ball of radius 3 with center at the origin and \vec{F} be the vector field given by

$$
\vec{F}(x, y, z)=2 x y \hat{i}+y z^{2} \hat{j}+x z \hat{k}
$$

(a) Use spherical coordinates to compute $\iiint_{D} \nabla \cdot \vec{F} d V$.
(b) If S denotes the upper half of the ball D, then verify Stokes' Theorem for \vec{F}.
6. (a) Let the force field \vec{F} be given by

$$
\vec{F}(x, y, z)=x y z(\hat{i}+\hat{j}+\hat{k})
$$

If \vec{N} is the outward drawn normal, then use Divergence theorem to evaluate $\iint_{S} \vec{F} \cdot \vec{N} d S$,
where S is the surface of the box: $0 \leq x \leq 2,0 \leq y \leq 1,0 \leq z \leq 4$.
(b) Evaluate

$$
\int_{0}^{1} \int_{0}^{2} \int_{0}^{2} d z d x d x
$$

using
(i) Cylindrical coordinates
(ii) Spherical polar coordinates.

