Name of Course	$:$ CBCS B.Sc. Phy. Sci.
Unique Paper Code	$: \mathbf{4 2 3 5 4 3 0 2}$
Name of Paper	$:$ DSC-Algebra
Semester	$:$ III
Duration	$: \mathbf{3}$ hours
Maximum Marks	$: \mathbf{7 5}$ Marks

Attempt any four questions. All questions carry equal marks.

1. (a) Let $\mathrm{G}=\{a+b \sqrt{2}\}$ where a and b are rational numbers not both 0 . Prove that G is a group under ordinary multiplication. Is this group Abelian? Verify your answer.
(b) Let $A=\left[\begin{array}{ll}1 & 5 \\ 6 & 3\end{array}\right]$. Find A^{-1} in $\operatorname{GL}\left(2, \mathbb{Z}_{7}\right)$.
2. (a) Prove that if ' a ' is any integer relatively prime to n, then $a^{\varphi(n)}=1$ (modulo n) where $\varphi(\mathrm{n})$ denotes the number of integers (positive) less than n and co-prime to n .
(b) Compute 5^{15} modulo 7 and $7{ }^{13}$ modulo11.
(c) Find all the left cosets of $\mathrm{H}=\{1,11\}$ in $\mathrm{U}(30)$.
3. (a) Make a Cayley's Table for the group G of symmetries of a rectangle.
(b) Write all the proper non-trivial subgroups of G.
(c) What is the centre of this group?
4. (a) Show that the set $2 \mathbb{Z}_{10}=\{0,2,4,6,8\} \oplus_{10} \bigodot_{10}$ is a ring. By constructing the multiplication table , show that ring has unity.
(b) Show that $\mathbb{Z}_{5}[\mathrm{i}]$ is not an Integral Domain.
(c) Let A and B be ideals of a ring R. If $A \cap B=\{0\}$, show that $a b=0$ when $a \in A$ and $b \in B$.
5. (a) Determine whether or not the $\operatorname{set}\{(2,21,0),(1,2,5),(7,21,5)\}$ is linearly independent over \mathbb{R}.
(b) Define $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ by $T\left(a_{1}, a_{2}, a_{3}\right)=\left(a_{1}-a_{2}, 2 a_{3}\right)$. Prove that T is a linear transformation and find a basis of both $\mathrm{N}(\mathrm{T})$ and $\mathrm{R}(\mathrm{T})$. Also verify the dimension theorem.
6. (a) For the vector space, Let $V=\left\{\left[\begin{array}{cc}a & a+b \\ a+b & b\end{array}\right]: a, b \in \mathbb{R}\right\}$. Find a basis of V over \mathbb{R}.
(b) Let $\mathrm{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation such that $\mathrm{T}(1,2)=(2,3)$ and $T(0,1)=(1,1)$. Find $T(a, b)$ for any $(a, b) \in \mathbb{R}^{2}$.
