| Name of the course | $:$ CBCS B.Sc. (H) Mathematics |
| :--- | :--- |
| Unique Paper Code | $: \mathbf{3 2 3 5 1 3 0 2}$ |
| Name of Paper | $:$ BMATH306-Group Theory-1 |
| Semester | $:$ III |
| Duration | $: \mathbf{3}$ hours |
| Maximum Marks | $: \mathbf{7 5}$ Marks |

## Attempt any four questions. All questions carry equal marks.

1. Show that the set $S$ of all ordered pairs $(a, b)$ of non-zero real numbers is an abelian group under the multiplication defined by

$$
(a, b)(c, d)=(a c, b d) \forall a, b, c, d \in S
$$

Consider the group $G=G L(2, \boldsymbol{R})$ under multiplication. Then find the centralizer of

$$
A=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) \text { and } B=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \text {. Also, find the center of } G .
$$

Let $A=\left(\begin{array}{ll}3 & 4 \\ 4 & 4\end{array}\right)$. Find $A^{-1}$ in $S L\left(2, Z_{5}\right)$. Verify the answer by direct calculation.
2. Find all the subgroups of $\boldsymbol{Z}$ :
a) containing $20 Z$.
b) contained in $20 Z$.

Prove that an abelian group which contains two distinct elements which are their own inverses must have a subgroup of order 4.

Suppose a group contains elements $a$ and $b$ such that $|a|=4$ and $|b|=5$ and that $a^{3} b=b a$. Find $|a b|$.
3. State Cayley's theorem and verify theorem for $U(10)$.

Let $a$ and $b$ be elements of a group $G$. If $O(a)=12, O(b)=22$ and $<a>\cap<b>\neq\{e\}$. Prove that $a^{6}=b^{11}$.

Find a non-cyclic group of order 4 in $U(40)$.
4. Let $p$ be a prime. If a group has more than $(p-1)$ elements of order $p$. Then prove that the group cannot be cyclic.

Let $\beta=\left(\begin{array}{ll}1 & 2\end{array}\right)(145)$. Write $\beta^{99}$ as a cycle.
Given a permutation $\alpha=\left(\begin{array}{l}12345678 \\ 13 \\ \hline\end{array}\right.$
a) Write $\alpha$ as product of disjoint cycle.
b) Find $|\alpha|$.
c) Find $\alpha^{-1}$ and verify by calculation.
5. Let $G$ be the additive group $\boldsymbol{R} \times \boldsymbol{R}$ and $H=\{(x, x): x \in \boldsymbol{R}\}$ be a subgroup of $G$. Give a geometric description of cosets of $H$.

If $N$ is a normal subgroup of order 2 of a group $G$ then show that $N \subseteq Z(G)$.
If $H$ is a subgroup of a group $G$ such that $(a H)(H b)$ for any $a, b \in G$ is either a left or a right coset of $H$ in $G$, prove that $H$ is normal.
6. If $\emptyset$ be a homomorphism from $Z_{30}$ onto a group of order 5, determine $\operatorname{Ker} \emptyset$.

Let $N$ be a normal subgroup of a group $G$. If $N$ is cyclic subgroup of $G$ then prove that every subgroup of $N$ is normal in $G$.

Prove that the mapping from $x \rightarrow x^{6}$ from $\boldsymbol{C}^{*}$ to $\boldsymbol{C}^{*}$ where $\boldsymbol{C}^{*}$ denotes the set of non -zero complex numbers is a homomorphism. What is the kernel?

