Name of the course : CBCS B.Sc. (H) Mathematics

Unique Paper Code : 32351302

Name of Paper : **BMATH306-Group Theory-1**

Semester : III

Duration : 3 hours

Maximum Marks : 75 Marks

Attempt any four questions. All questions carry equal marks.

1. Show that the set S of all ordered pairs (a,b) of non-zero real numbers is an abelian group under the multiplication defined by

$$(a,b)(c,d) = (ac,bd) \ \forall \ a,b,c,d \in S$$

Consider the group $G = GL(2, \mathbf{R})$ under multiplication. Then find the centralizer of $A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Also, find the center of G.

Let $A = \begin{pmatrix} 3 & 4 \\ 4 & 4 \end{pmatrix}$. Find A^{-1} in $SL(2, Z_5)$. Verify the answer by direct calculation.

- 2. Find all the subgroups of **Z**:
 - a) containing $20\boldsymbol{Z}$.
 - b) contained in 20Z.

Prove that an abelian group which contains two distinct elements which are their own inverses must have a subgroup of order 4.

Suppose a group contains elements a and b such that |a| = 4 and |b| = 5 and that $a^3b = ba$. Find |ab|.

3. State Cayley's theorem and verify theorem for $\mathit{U}(10)$.

Let a and b be elements of a group G. If O(a) = 12, O(b) = 22 and $\langle a \rangle \cap \langle b \rangle \neq \{e\}$. Prove that $a^6 = b^{11}$.

Find a non-cyclic group of order 4 in U(40).

4. Let p be a prime. If a group has more than (p-1) elements of order p. Then prove that the group cannot be cyclic.

Let
$$\beta = (1\ 2\ 3)(1\ 4\ 5)$$
. Write β^{99} as a cycle.

Given a permutation $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 3 & 8 & 7 & 6 & 5 & 2 & 4 \end{pmatrix}$

- a) Write α as product of disjoint cycle.
- b) Find $|\alpha|$.
- c) Find α^{-1} and verify by calculation.
- 5. Let *G* be the additive group $\mathbf{R} \times \mathbf{R}$ and $H = \{(x, x) : x \in \mathbf{R}\}$ be a subgroup of *G*. Give a geometric description of cosets of *H*.

If N is a normal subgroup of order 2 of a group G then show that $N \subseteq Z(G)$.

If H is a subgroup of a group G such that (aH)(Hb) for any $a, b \in G$ is either a left or a right coset of H in G, prove that H is normal.

6. If \emptyset be a homomorphism from Z_{30} onto a group of order 5, determine $Ker \emptyset$.

Let N be a normal subgroup of a group G. If N is cyclic subgroup of G then prove that every subgroup of N is normal in G.

Prove that the mapping from $x \to x^6$ from C^* to C^* where C^* denotes the set of non-zero complex numbers is a homomorphism. What is the kernel?