Unique Paper Code	$: \mathbf{3 2 3 5 5 3 4 5}$
Name of Paper	$:$ Linear Programming and Game Theory (NC)
Name of Course	$:$:III
Semester	$: \mathbf{3}$ hours
Duration	$: \mathbf{7 5}$

Attempt any four questions. All questions carry equal marks.

1. Find all the basic feasible solutions of the following equations

$$
\begin{aligned}
2 x_{1}+3 x_{2}+4 x_{3}+x_{4} & =6 \\
x_{1}+x_{2}+7 x_{3}+x_{4} & =2 .
\end{aligned}
$$

Use Simplex method to find the inverse of the matrix $\left[\begin{array}{ll}1 & 4 \\ 2 & 5\end{array}\right]$.
2. Solve the following linear programming problem using Big-M method

$$
\begin{aligned}
& \text { Maximize } z=2 x_{1}+4 x_{2}+4 x_{3}-3 x_{4} \\
& \text { Subject to } \quad 2 x_{1}+x_{2}+x_{3}=4 \\
& x_{1}+4 x_{2}+\quad 3 x_{4}=6 \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0 .
\end{aligned}
$$

3. Let x_{0} be feasible solution of primal linear programming problem-lpp and w_{0} be a feasible solution of its dual, if the objective values of primal and dual lpp are equal show that x_{0} and w_{0} are the optimum solutions to the primal and dual lpp respectively.
Obtain the dual linear program of the following primal linear program:

$$
\begin{aligned}
\text { Minimize } z= & -2 x_{1}+3 x_{2}+5 x_{3} \\
\text { Subject to } \quad & -2 x_{1}+x_{2}+3 x_{3}+x_{4} \geq 5 \\
& 2 x_{1}+. \quad x_{3}+x_{4}=6
\end{aligned} \quad \begin{aligned}
& \\
& x_{1} \leq 0, x_{2}, \\
& x_{3} \geq 0 ; x_{4} \text { Unrestricted in sign. }
\end{aligned}
$$

4. Given a transportation problem:

Destinations		P	Q	R	S	Availability	
Origin	A	11	9	7	10	120	
	B	5	11	9	6	115	
	C	4	7	8	6	210	
	D	3	12	4	5	105	
	Requirements				95	115	140
2							

Compare the initial basic feasible solutions for the given transportation problem using
(i) Least Cost Method
(ii) North-West Corner Method
(iii) Vogel's Approximation Method-VAM,

Also find the optimal solution of the transportation problem using VAM for initial basic feasible solution.
5. Solve the following cost minimizing assignment problem:

	I	II	III	IV	V	VI
A	7	3	3	7	6	2
B	5	7	7	5	5	7
C	3	7	9	3	1	6
D	6	7	8	6	9	4
E	5	3	7	5	6	3
F	8	4	8	7	2	2

6. For the following payoff matrix $\left[\begin{array}{cc}2 & 6 \\ -2 & x\end{array}\right]$ of a game, show that the game has a saddle point whatever x may be. Find the value of this game and determine the saddle point.

Solve the following game graphically:

Player B		
Player A	2	1
	1	0
	0	3
	-2	2

