Unique Paper Code	:32355345
Name of Paper	: Linear Programming and Game Theory (NC)
Name of Course	:Mathematics: Generic Elective CBCS (LOCF) GE-3
Semester	:III
Duration	: 3 hours
Maximum Marks	:75

Attempt any four questions. All questions carry equal marks.

1. Find all the basic feasible solutions of the following equations $2x_1 + 3x_2 + 4x_3 + x_4 = 6$

 $x_1 + x_2 + 7x_3 + x_4 = 0$ $x_1 + x_2 + 7x_3 + x_4 = 2.$ Use Simplex method to find the inverse of the matrix $\begin{bmatrix} 1 & 4 \\ 2 & 5 \end{bmatrix}$.

2. Solve the following linear programming problem using Big-M method

3. Let x_0 be feasible solution of primal linear programming problem-lpp and w_0 be a feasible solution of its dual, if the objective values of primal and dual lpp are equal show that x_0 and w_0 are the optimum solutions to the primal and dual lpp respectively.

Obtain the dual linear program of the following primal linear program:

$$\begin{array}{ll} \mbox{Minimize } z = -2x_1 + 3x_2 + 5x_3 \\ \mbox{Subject to} & -2x_1 + x_2 + 3x_3 + x_4 \geq 5 \\ & 2x_1 + . & x_3 + x_4 = 6 \\ & x_1 \leq 0, x_2, \ x_3 \geq 0; \ x_4 \ \mbox{Unrestricted in sign.} \end{array}$$

4. Given a transportation problem:

Destinations		Р	Q	R	S	Availability
	А	11	9	7	10	120
	В	5	11	9	6	115
Origin	С	4	7	8	6	210
	D	3	12	4	5	105
Requirements	5	95	115	140	200	

Compare the initial basic feasible solutions for the given transportation problem using

- (i) Least Cost Method
- (ii) North-West Corner Method
- (iii) Vogel's Approximation Method-VAM,

Also find the optimal solution of the transportation problem using VAM for initial basic feasible solution.

		0	00	1		
	Ι	II	III	IV	V	VI
А	7	3	3	7	6	2
В	5	7	7	5	5	7
С	3	7	9	3	1	6
D	6	7	8	6	9	4
Е	5	3	7	5	6	3
F	8	4	8	7	2	2

5. Solve the following cost minimizing assignment problem:

6. For the following payoff matrix $\begin{bmatrix} 2 & 6 \\ -2 & x \end{bmatrix}$ of a game, show that the game has a saddle point whatever x may be. Find the value of this game and determine the saddle point.

Solve the following game graphically:

Player B			
	2	1	
Player A	1	0	
	0	3	
	-2	2	