Name of the Course	: Generic Elective
Unique Paper Code	: 32355301
Name of the Paper	: GE-3 Differential Equations
Semester	: 111
Duration	: 3 Hours
Maximum Marks	: 75 Marks

Attempt any four questions. All questions carry equal marks.

1. (i) Solve

$$xdy - ydx = \sqrt{x^2 + y^2} dx.$$

(ii) Solve the initial value problem

$$(x^{2} + y^{2} + x)dx + xy dy = 0, \quad y(1) = 1.$$

(iii) Solve the initial value problem

$$x\frac{dy}{dx} + y = y^2 \log x, \qquad y(1) = -1.$$

2. (i) Find the orthogonal trajectories of the family of curves $3xy = x^3 - a^3$, *a* being parameter of the family.

(ii) Find a family of oblique trajectories that intersect the family of circles $x^2 + y^2 = c^2$ at angle 45°.

(iii) Solve

$$\frac{dy}{dx} = e^{x+y} + x^2 e^{x^3+y} \, .$$

3. (i) Solve by method of variation of parameters

$$y'' + y = \csc x.$$

(ii) Solve by method of undetermined coefficients

 $y'' + 1.44 y = 24 \cos 1.2 x.$

(iii) Solve

$$y''' - 2y'' + 4y' - 8y = 0$$
, $y(0) = -1$, $y'(0) = 30$, $y''(0) = 28$.

4. (i) Show that $\{e^{-x}, e^{3x}, e^{4x}\}$ forms a basis of the solution set of the equation

$$\frac{d^3 y}{dx^3} - 6\frac{d^2 y}{dx^2} + 5\frac{dy}{dx} + 12y = 0.$$

(ii) Solve the initial value problem

$$x^{2} y'' - 2x y' - 10y = 0, y(1) = 5, y'(1) = 4.$$

(iii) Solve the linear system

$$y'_{1} = 2y_{1} + 5y_{2}$$
$$y'_{2} = 5y_{1} + 12.5y_{2}$$

- 5. (i) Find the partial differential equation arising from the surface $z = xy + f(x^2 + y^2)$.
 - (ii) Find the general solution of the partial differential equation $u_x + 2xy^2 u_y = 0.$
 - (iii) Apply the method of separation of variables u(x, y) = f(x)g(y) to solve

$$yu_x + xu_y = 0$$
 on $u(0, y) = y^2$.

6. Reduce each of the following equations into canonical form and find the general solution:

(i)
$$u_x - u_y = u, \quad u(x,0) = 4e^{-3x}.$$

- (ii) $u_{xx} + 6u_{xy} + 9u_{yy} + 3yu_{y} = 0.$
- (iii) $u_{xx} 3u_{xy} + 2u_{yy} = 0.$