Name of the Course	$:$ Generic Elective
Unique Paper Code	$: \mathbf{3 2 3 5 5 3 0 1}$
Name of the Paper	$:$ GE-3 Differential Equations
Semester	$:$ III
Duration	$: \mathbf{3}$ Hours
Maximum Marks	$: \mathbf{7 5}$ Marks

Attempt any four questions. All questions carry equal marks.

1. (i) Solve

$$
x d y-y d x=\sqrt{x^{2}+y^{2}} d x .
$$

(ii) Solve the initial value problem

$$
\left(x^{2}+y^{2}+x\right) d x+x y d y=0, \quad y(1)=1 .
$$

(iii) Solve the initial value problem

$$
x \frac{d y}{d x}+y=y^{2} \log x, \quad y(1)=-1 .
$$

2. (i) Find the orthogonal trajectories of the family of curves $3 x y=x^{3}-a^{3}, a$ being parameter of the family.
(ii) Find a family of oblique trajectories that intersect the family of circles $x^{2}+y^{2}=c^{2}$ at angle 45°.
(iii) Solve

$$
\frac{d y}{d x}=e^{x+y}+x^{2} e^{x^{3}+y} .
$$

3. (i) Solve by method of variation of parameters

$$
y^{\prime \prime}+y=\operatorname{cosec} x .
$$

(ii) Solve by method of undetermined coefficients

$$
y^{\prime \prime}+1.44 y=24 \cos 1.2 x .
$$

(iii) Solve

$$
y^{\prime \prime \prime}-2 y^{\prime \prime}+4 y^{\prime}-8 y=0, y(0)=-1, y^{\prime}(0)=30, y^{\prime \prime}(0)=28
$$

4. (i) Show that $\left\{e^{-x}, e^{3 x}, e^{4 x}\right\}$ forms a basis of the solution set of the equation

$$
\frac{d^{3} y}{d x^{3}}-6 \frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}+12 y=0
$$

(ii) Solve the initial value problem

$$
x^{2} y^{\prime \prime}-2 x y^{\prime}-10 y=0, y(1)=5, y^{\prime}(1)=4 \text {. }
$$

(iii) Solve the linear system

$$
\begin{aligned}
& y_{1}^{\prime}=2 y_{1}+5 y_{2} \\
& y_{2}^{\prime}=5 y_{1}+12.5 y_{2}
\end{aligned}
$$

5. (i) Find the partial differential equation arising from the surface

$$
z=x y+f\left(x^{2}+y^{2}\right) .
$$

(ii) Find the general solution of the partial differential equation

$$
u_{x}+2 x y^{2} u_{y}=0
$$

(iii) Apply the method of separation of variables $u(x, y)=f(x) g(y)$ to solve

$$
y u_{x}+x u_{y}=0 \text { on } u(0, y)=y^{2} .
$$

6. Reduce each of the following equations into canonical form and find the general solution:
(i) $\quad u_{x}-u_{y}=u, \quad u(x, 0)=4 e^{-3 x}$.
(ii) $u_{x x}+6 u_{x y}+9 u_{y y}+3 y u_{y}=0$.
(iii) $u_{x x}-3 u_{x y}+2 u_{y y}=0$.
