: CBCS B.Sc. (Mathematical Sciences) / B.Sc. (Physical Sciences)/ B.Sc. (Life Sciences)/Applied Sciences

Unique Paper Code : 42357501

Name of the Paper

: DSC-Differential Equations

Semester :V
Duration
: 3 Hours
Maximum Marks
: 75

Attempt any four questions. All questions carry equal marks.

1. Find an integrating factor and solve the differential equation

$$
\left(y^{2} x+y^{2}+y\right) d x+(2 x y+1) d y=0
$$

Solve the differential equation

$$
3 x\left(1-x^{2}\right) y^{2} \frac{d y}{d x}+\left(2 x^{2}-1\right) y^{3}=x^{3}
$$

Also, solve the differential equation

$$
(3 y-7 x+7) d x+(7 y-3 x+3) d y=0
$$

2. Solve the differential equation

$$
\frac{d^{2} y}{d x^{2}}-y=x^{2} \cos x
$$

Also, solve the following initial value problem

$$
x^{2} \frac{d^{2} y}{d x^{2}}-2 y=4 x-8, \quad y(1)=4, y^{\prime}(1)=-1
$$

3. Given that $y=e^{2 x}$ is a solution of

$$
(2 x+1) \frac{d^{2} y}{d x^{2}}-4(x+1) \frac{d y}{d x}+4 y=0
$$

Find the linearly independent solution by reducing the order and also write the general solution.

Use the method of variation of parameters to solve the equation

$$
\frac{d^{2} y}{d x^{2}}+6 \frac{d y}{d x}+9 y=\frac{e^{-3 x}}{x^{3}}
$$

4. Find a family of oblique trajectories that intersect the family of parabolas $y^{2}=c x$ at angle 60°.

Also, solve the system of linear differential equations

$$
\begin{gathered}
2 \frac{d x}{d t}+4 \frac{d y}{d t}+x-y=3 e^{t} \\
\frac{d x}{d t}+\frac{d y}{d t}+2 x+2 y=e^{t}
\end{gathered}
$$

5. Find the general solution of the equation

$$
(y-x u) \frac{\partial u}{\partial x}+(x+y u) \frac{\partial u}{\partial y}=x^{2}-y^{2}
$$

Apply the method of separation of variables to solve the equation:

$$
\frac{\partial u}{\partial x}-\frac{\partial u}{\partial y}+u=0, \quad \text { with } u(x, 0)=4 e^{-3 x}
$$

6. Find the partial differential equation arising from the surfaces

$$
z=f\left(x^{2}+y^{2}\right)
$$

Also, reduce the equation

$$
\frac{\partial^{2} u}{\partial x^{2}}+2 x \frac{\partial^{2} u}{\partial x \partial y}+x^{2} \frac{\partial^{2} u}{\partial y^{2}}=0
$$

to canonical form.

