Name of Course	$:$ CBCS (LOCF) B.Sc. (Hons) Mathematics
Unique Paper Code	$: 32357507$
Name of Paper	DSE-2: Probability Theory and Statistics
Semester	$:$ V
Duration	$: \mathbf{3}$ hours
Maximum Marks	$: \mathbf{7 5}$ Marks

Attempt any four questions. All questions carry equal marks.

1. Suppose that the cumulative distribution function of the random variable X is given by

$$
\mathrm{F}(\mathrm{x})=1-e^{-x^{2}}, x>0 .
$$

Evaluate $\mathrm{P}(\mathrm{X}>2), \mathrm{E}(\mathrm{X})$ and $\operatorname{Var}(\mathrm{X})$. Find the $25^{\text {th }}$ percentile $(\mathrm{pth}$ percentile is a value $\xi \mathrm{p}$ such that $\mathrm{P}(\mathrm{X}<\xi \mathrm{p}) \leq \mathrm{p}$ and $\mathrm{P}(\mathrm{X} \leq \xi \mathrm{p}) \geq \mathrm{p})$, the mode and the median of this distribution.
2. Let C be the set of points interior to or on the boundary of a square with side of length 1 . Moreover, say that the square is in the first quadrant with one vertex at the point $(0,0)$ and an opposite vertex at the point $(1,1)$. Let $\mathrm{P}(\mathrm{A})$ be the probability of region A contained in C. If $A=\{(x, y): 0<x<y<1\}$, compute $P(A)$, and what will be $P(A)$ if $A=\{(x, y): 0<x=y<1\}$. Suppose, two points are independently chosen at random in the interval ($-1,1$). Obtain the probability that the three parts into which the interval is divided can form the sides of a triangle.
3. State the memory-less property of the exponential distribution. Let the time (in hours) required to repair a smart mobile is exponentially distributed with mean 3 . What is the probability that the repair time exceeds 3 hours? Also, find the probability that a repair takes at least 5 hours given that its duration exceeds 4 hours?
4. Let

$$
f(x, y)=24 x y, 0<x<1,0<y<1,0<x+y<1 \text {, and }=0 \text {, otherwise. }
$$

Find the moment generating function of X and Y , and hence, find whether X and Y are independent? Further obtain the coefficient of correlation between X and Y .
5. Let
$f(x, y)=10 x y^{2,}, 0<x<y<1$, and $=0$ elsewhere, be the joint pdf of X and Y.
Find the conditional mean and variance of X , given $\mathrm{Y}=\mathrm{y}, 0<\mathrm{y}<1$. Hence find the distribution of $\mathrm{Z}=\mathrm{E}(\mathrm{X} \mid \mathrm{Y})$ and determine $\mathrm{E}(\mathrm{Z})$ and $\operatorname{Var}(\mathrm{Z})$ and compare these to $\mathrm{E}(\mathrm{X})$ and $\operatorname{Var}(\mathrm{X})$, respectively.
6. (i) State the Chebyshev's Theorem (or Inequality). Let the number of customer's visiting a bike showroom is a random variable with mean 12 and standard deviation 2 . With what probability can we assert that there will be more than 6 but fewer than 18 customers visiting the showroom?
(ii) Let $\left\{X_{i}\right\}$, $i=1,2, \ldots$ be a sequence of i.i.d. Poisson variables with $E\left[X_{i}\right]=1.5$. Find $\mathrm{P}(160<\mathrm{Y}<200)$, where $\mathrm{Y}=\mathrm{X}_{1}+\mathrm{X}_{2}+\ldots+\mathrm{X}_{100}$

