<u>Set - D</u>

S. No. of Question Paper	:	
Unique Paper Code	:	32227519
Name of the Paper	:	Linear Algebra and Tensor Analysis (DSE)
Name of the Course	:	B.Sc. (Hons) Physics CBCS
Semester	:	V

Duration: **3** + **1** hours

Maximum marks: 75

Attempt any four questions. All questions carry equal marks.

1. (a) Determine whether the identity element exist or not for the binary operation * defined as:

$$a * b = a^b$$

(b) Check whether the subset of R^3 defined as

$$\{ [x_1, x_2, x_3] \mid x_1 x_2 = x_3 \}$$

forms a subspace or not.

(c) Consider the vector space $P_3(t)$ of polynomials of degree ≤ 3 . Find the coordinate vector $[v]_s$ of $v = 3t^3 - 4t^2 + 2t - 5$ relative to the basis *S* where

$$S = \{(t-1)^3, (t-1)^2, (t-1), 1\}$$
(4.75+5+9)

is a basis of $P_3(t)$.

2. (a) Find the dimension of, and a basis for, the solution space of the following system:

$$x_1 + 2x_2 - 4x_3 + 3x_4 - x_5 = 0$$

$$x_1 + 2x_2 - 2x_3 + 2x_4 + x_5 = 0$$

$$2x_1 + 4x_2 - 2x_3 + 3x_4 + 4x_5 = 0$$

(b) A linear transformation T on R^3 is represented relative to the ε - basis by the matrix

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 0 & -2 \\ -1 & 2 & 3 \end{bmatrix}$$

Let
$$\alpha_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$
, $\alpha_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ and $\alpha_3 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$.

- (i) Determine the matrix **B** that represents T relative to the α -basis by computing each T α_i and expressing it in terms of the α -basis.
- (ii) Find the transition matrix **P** from the ε -basis to the α -basis and show that $P^{-1}AP = B.$ (6.75 + 12)
- 3. (a) Write the following matrix A as a product of elementary matrices

$$A = \begin{bmatrix} 1 & -3 \\ -2 & 4 \end{bmatrix}$$

(b) Evaluate 4^A , where A is

$$A = \begin{bmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{bmatrix}$$
(8.75 +10)

- 4. (a) Consider the vectors $\{(1, 2, -1), (2, 0, 2), (1, -2, 3)\}$ in \mathbb{R}^3 . Using Gram Schmidt orthogonalization process construct an orthonormal basis for this space.
 - (b) Find the eigen values of the following matrix

$$A = \begin{bmatrix} p & q & q \\ q & p & q \\ q & q & p \end{bmatrix}$$

- (c) Given a vector $\vec{A} = (u, u + v, u + v + w)$. Find the elements of the second order skew-symmetric tensor associated with it. (6 + 6.75 + 6)
- 5. (a) If A_q is a vector, show that

$$F_{pq} = \frac{\partial A_p}{\partial x_k} + \frac{\partial A_k}{\partial x_p}$$

is a second order cartesian tensor.

- (b) Force $\vec{F} = 3\hat{\imath} + 2\hat{\jmath} + \hat{k}$ acts on a cuboid $0 \le x \le 6, 0 \le y \le 4$ and $0 \le z \le 2$. Find stress tensor acting on the cuboid. Also find the principal stresses. (6 + 12.75)
- 6. (a) Using tensors, prove that the divergence of curl of a vector is zero.

(b) In a three-dimensional cartesian coordinate system (x, y, z), let $\vec{B} = B_0 \hat{x}$, where B_0 is a constant. Find the contravariant and covariant components of this constant vector \vec{B} in spherical polar coordinates. (6.75 + 12)