Set - D

S. No. of Question Paper :

Unique Paper Code : 32227519

Name of the Paper : Linear Algebra and Tensor Analysis (DSE)
Name of the Course : B.Sc. (Hons) Physics CBCS

Semester : V

Duration: $\mathbf{3 + 1}$ hours
Maximum marks: 75

Attempt any four questions. All questions carry equal marks.

1. (a) Determine whether the identity element exist or not for the binary operation * defined as:

$$
a * b=a^{b}
$$

(b) Check whether the subset of R^{3} defined as

$$
\left\{\left[x_{1}, x_{2}, x_{3}\right] \mid x_{1} x_{2}=x_{3}\right\}
$$

forms a subspace or not.
(c) Consider the vector space $\boldsymbol{P}_{3}(t)$ of polynomials of degree ≤ 3. Find the coordinate vector $[v]_{s}$ of $v=3 t^{3}-4 t^{2}+2 t-5$ relative to the basis S where

$$
S=\left\{(t-1)^{3},(t-1)^{2},(t-1), 1\right\}
$$

is a basis of $\boldsymbol{P}_{3}(t)$.
2. (a) Find the dimension of, and a basis for, the solution space of the following system:

$$
\begin{gathered}
x_{1}+2 x_{2}-4 x_{3}+3 x_{4}-x_{5}=0 \\
x_{1}+2 x_{2}-2 x_{3}+2 x_{4}+x_{5}=0 \\
2 x_{1}+4 x_{2}-2 x_{3}+3 x_{4}+4 x_{5}=0
\end{gathered}
$$

(b) A linear transformation T on R^{3} is represented relative to the ε - basis by the matrix

$$
A=\left[\begin{array}{ccc}
1 & 2 & 1 \\
2 & 0 & -2 \\
-1 & 2 & 3
\end{array}\right]
$$

Let $\alpha_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right], \alpha_{1}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ and $\alpha_{3}=\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$.
(i) Determine the matrix \mathbf{B} that represents T relative to the α-basis by computing each $\mathrm{T} \alpha_{\mathrm{i}}$ and expressing it in terms of the α-basis.
(ii) Find the transition matrix \mathbf{P} from the ε-basis to the α-basis and show that $P^{-1} A P=B$.
3. (a) Write the following matrix A as a product of elementary matrices

$$
A=\left[\begin{array}{cc}
1 & -3 \\
-2 & 4
\end{array}\right]
$$

(b) Evaluate 4^{A}, where A is

$$
A=\left[\begin{array}{ccc}
5 & -6 & -6 \tag{8.75+10}\\
-1 & 4 & 2 \\
3 & -6 & -4
\end{array}\right]
$$

4. (a) Consider the vectors $\{(1,2,-1),(2,0,2),(1,-2,3)\}$ in \boldsymbol{R}^{3}. Using Gram Schmidt orthogonalization process construct an orthonormal basis for this space.
(b) Find the eigen values of the following matrix

$$
A=\left[\begin{array}{lll}
p & q & q \\
q & p & q \\
q & q & p
\end{array}\right]
$$

(c) Given a vector $\vec{A}=(u, u+v, u+v+w)$. Find the elements of the second order skew-symmetric tensor associated with it.

$$
(6+6.75+6)
$$

5. (a) If A_{q} is a vector, show that

$$
F_{p q}=\frac{\partial A_{p}}{\partial x_{k}}+\frac{\partial A_{k}}{\partial x_{p}}
$$

is a second order cartesian tensor.
(b) Force $\vec{F}=3 \hat{\imath}+2 \hat{\jmath}+\hat{k}$ acts on a cuboid $0 \leq x \leq 6,0 \leq y \leq 4$ and $0 \leq z \leq 2$. Find stress tensor acting on the cuboid. Also find the principal stresses. $\quad(6+12.75)$
6. (a) Using tensors, prove that the divergence of curl of a vector is zero.
(b) In a three-dimensional cartesian coordinate system (x, y, z), let $\vec{B}=B_{0} \hat{x}$, where B_{0} is a constant. Find the contravariant and covariant components of this constant vector \vec{B} in spherical polar coordinates.
$(6.75+12)$

