Name of Course	$:$ CBCS(LOCF) Generic Elective
Unique Paper Code	$: \mathbf{3 2 3 5 5 1 0 1}$
Name of Paper	$:$ GE-1 Calculus
Semester	$: \mathbf{I}$
Duration	$: \mathbf{3}$ hours
Maximum Marks	$: \mathbf{7 5}$ Marks

Attempt any four questions. All questions carry equal marks.

1. What do you understand by horizontal and vertical asymptotes? Explain with graphs.

Given that $\lim _{n \rightarrow \infty} f(x)=3$ and $\lim _{n \rightarrow \infty} g(x)=-5$. Find the limit $\lim _{n \rightarrow \infty} \frac{6 f(x)}{5 f(x)+3 g(x)}$, if exists.
Evaluate $\lim _{n \rightarrow-\infty} \frac{7 x^{4}-2 x^{2}+1}{3 x^{2}+5}$.
Sketch the curve $r=\frac{1}{2}+\cos \theta$ in polar coordinates.
2. Find the absolute maximum and absolute minimum values of $f(x, y)=2 x^{2}-4 x+y^{2}-4 y+1$ on the closed triangular plate in the first quadrant bounded by the lines $x=0, y=2, y=2 x$.
Find the area of the surface generated by revolving the curve $3 x=y^{2}, 0 \leq y \leq 1$, about the y axis.
Find the total derivative of the function $t^{3 \sin t}+(\sin t)^{t^{3}}$ with respect to t .
3. Show that the function $f: \mathcal{R}^{2} \rightarrow \mathcal{R}$ defined by

$$
f(x, y)= \begin{cases}\frac{x y^{2}}{x^{2}+y^{4}}, & \text { if } x^{2}+y^{4} \neq 0 \\ 0, & \text { if } x=0=y\end{cases}
$$

possess first order partial derivatives everywhere including the origin but the function is discontinuous at the origin.
Find the volume of the solid that results when the region enclosed by $x=y^{2}$ and $\quad \frac{x}{2}=y$ is revolved about the line $y=-2$.
4. Sketch and label the centre, vertices, foci and asymptotes of the curve

$$
9 x^{2}-4 y^{2}-18 x+45=0
$$

Find the equation of parabola whose vertex is $(1,2)$ and focus $(-3,2)$. Also find its directrix.
Find the equation of ellipse having length of major axis 26 and foci $(0, \pm 12)$.
5. Find the equation of the tangent plane and normal line to the surface $z=e^{y} \sin 3 x+2$ at the point $P_{0}\left(\frac{\pi}{6}, 0,3\right)$. Find the parametric equations for the tangent line to the curve of intersection of the given surface and $x^{2}+y^{2}+z^{2}=9$ at P_{0}.
Let $\vec{R}(\mathrm{t})=\ln (t) \hat{\imath}+\frac{t^{3}}{2} \hat{\jmath}-t \hat{k}$ be the position vector of a particle in space at time t . Find its velocity, speed, acceleration and direction of motion at time t.
6. Find curvature and radius of curvature for the graph of vector equation $\vec{r}(t)=e^{t} \cos t \hat{\imath}+e^{t} \sin t \hat{\jmath}+2 \hat{k}$ at $\mathrm{t}=0$.

Determine for what values of t the vector valued function $f(t)=\langle\ln (t+1)| t+,2|,[t]\rangle$ is continuous?

Find the arc length parametrization of the curve:

$$
\vec{r}(t)=\cos 3 t \hat{\imath}+\sin 3 t \hat{\jmath}+4 t \hat{k}, \quad 0 \leq t \leq 2 \pi
$$

