Name of Course	$:$ CBCS-2 (LOCF) B.Sc. (H) Mathematics
Unique Paper Code	$: \mathbf{3 2 3 5 1 1 0 2}$
Name of Paper	$:$ C2-Algebra BMATH102
Semester	$:$ I
Duration	$: \mathbf{3}$ hours
Maximum Marks	$: \mathbf{7 5}$ Marks

Attempt any four questions. All questions carry equal marks.

1. Solve the equations:
(a) $x^{4}-7 x^{3}+17 x^{2}-x-26=0$ given that one root is $3+2 i$.
(b) $2 x^{3}-x^{2}-22 x-24=0$ given that all roots are rational.
(c) $x^{4}+15 x^{3}+70 x^{2}+120 x+64=0$ given that the product of two of its roots is equal to the other two.
2. Find $|z|, \arg z, \operatorname{Arg} z, \arg (-z)$ and $\arg \bar{z}$ for

$$
z=(-1+i)^{4}(\sqrt{3}+i)^{10} .
$$

Solve the equation $z^{2}+(2 i-3) z+5-i=0$.
3. For integers a, b, define $a \sim b$ if and only if $2 a+b$ is a multiple of 3 . Show that ' \sim ' defines an equivalence relation on \mathbb{Z}. Find the equivalence class of ' 0 ' and its quotient set determined by this relation. Evaluate $a+b(\bmod n), a b(\bmod n)$ and $(a-b)^{2}(\bmod n)$ for $a=2003, b=-125$ and $n=37$.
4. Show that the following functions $f: A \rightarrow \mathbb{R}$ are one-to-one. Find the range of each function and a suitable inverse:
(a) $A=\{x \in \mathbb{R} \mid x \neq 2\}, f(x)=1-\frac{1}{x-2}$.
(a) $A=\{x \in \mathbb{R} \mid x \neq-5\}, f(x)=\frac{x-5}{x+5}$.

Prove that \mathbb{R}, the set of real numbers and the interval $(5,7)$ have the same cardinality.
5. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation which first rotates the given point through an angle of $\pi / 6$ about origin and then reflects it about y-axis. Find the Standard matrix of T, denote it by A and check if A is invertible. If yes, find A^{-1}. Determine the eigenspaces of A corresponding to each eigenvalue.
6. Check whether the set $\{(1,0,5),(2,1,6),(3,4,0)\}$ is linear independent or not.

Let $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 4 \\ 5 & 6 & 0\end{array}\right]$. Find the inverse using elementary row operations method using the form $[A: I]$. Also, find the eigenvalues, eigenvectors and eigenspaces of the matrix A. What is the rank of the matrix A ?

