Name of the course	$:$	B.Sc. $\mathbf{(H) M a t h e m a t i c s ~}$
Unique Paper Code	$:$	$\mathbf{3 2 3 5 1 1 0 1}$
Name of the Paper	$:$	C-1 Calculus (BMATH 101)
Semester	$:$	\mathbf{I}
Duration	$:$	$\mathbf{3}$ hours
Maximum Marks	$:$	$\mathbf{7 5}$

Attempt any four questions. All questions carry equal marks.

1. (i) Let $f(x)$ be a function defined by $\mathrm{f}(x)=x^{5}+5 x^{4}$. Determine the intervals in which this function is increasing or decreasing. Further, determine the points of local maxima and local minima. Find the open intervals in which $f(x)$ is concave up and concave down. Also, determine the point of inflexion, if any.
(ii) Find the nth derivative of

$$
y=e^{3 x} \sin x \sin (2 x) \sin (3 x)
$$

(iii) Find curvature and radius of curvature for

$$
\overrightarrow{r(t)}=\left(e^{t} \cos t\right) \hat{\imath}+\left(e^{t} \sin t\right) \hat{\jmath}+2 \hat{k}
$$

$7.75+6+5$
2. Find
(i) $\lim _{x \rightarrow 0}(\operatorname{cosec} x-\cot x)$

$$
\begin{aligned}
& \lim _{x \rightarrow 0}\left(\frac{1}{e^{x}-1}-\frac{1}{x}\right) \\
& \lim _{x \rightarrow 1}(1-x) \tan \frac{\pi x}{2}
\end{aligned}
$$

(ii)Sketch the ellipse

$$
3(x+2)^{2}+4(y+1)^{2}=12
$$

and label the centre, foci, vertices and ends of minor axis.
(iii)Derive the equation of hyperbola with foci $(2,2)$ and $(6,2)$; asymptotes $y=x-2$ and $y=6-x$. Also, find the centre and vertices of this hyperbola.

3 (i)Find the volume of the solid that is generated by revolving the region bound by the graphs of $y=x^{2}$ and $y^{2}=x$ about the y-axis.
(ii)Use cylindrical shells to find the volume of the solid generated when the region bounded by the curve $y=x^{3}$, the x-axis and the line $x=1$ is revolved about the y-axis.
(iii)Find the arc length of the curve $f(x)=x^{3}+\frac{1}{12 x}$ over the interval $\left[\frac{1}{2}, 2\right] . \quad(7+6.75+5)$

4 (i) Find the tangent vector and parametric equations for the tangent line to the graph of the vector function

$$
\overrightarrow{F(t)}=t^{-3} \hat{\imath}+t^{-2} \hat{\jmath}+t^{-1} \hat{k}
$$

at the point P corresponding to $t=-1$.
(ii) A particle moves with position vector

$$
\overrightarrow{r(t)}=\hat{\imath}+t^{2} \hat{\jmath}+e^{-t} \hat{k}
$$

Find the velocity, speed and acceleration of the particle.
(iii) A projectile is fired from ground level at an angle of 30° with a muzzle speed of $150 \mathrm{~m} / \mathrm{s}$. Find the time of flight, the range and the maximum height attained.
(6+6+6.75)
5 (i) Find all values of k and l such that

$$
\lim _{x \rightarrow 0} \frac{k+\cos (l x)}{x^{2}}=-4
$$

(ii) Trace the curve $r=3 \sin 2 \theta$
(iii) Trace the conic by removing $x y$ term.

$$
\begin{equation*}
6 x^{2}+24 x y-y^{2}-12 x+26 y+11=0 \tag{6+6+6.75}
\end{equation*}
$$

6(i) If $y=\left(\sin ^{-1} x\right)^{2}$, prove that

$$
\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-n^{2} y_{n}=0
$$

(ii) Given \vec{v} and \vec{a} are velocity and acceleration (respectively) of a moving particle at a certain instant of time.

$$
\vec{v}=2 \hat{\imath}+2 \hat{\jmath}+\hat{k}, \vec{a}=\hat{\imath}+2 \hat{k}
$$

Find tangential and normal components of velocity and acceleration ,unit tangent vector and unit normal vector at this instant.
(iii) Evaluate

$$
\int_{0}^{1} x^{5} \sqrt{\frac{1+x^{2}}{1-x^{2}}} \mathrm{~d} x
$$

