Name of the Department	$:$	Physics
Name of the Course	$:$	B.Sc. (H) Physics - CBCS - NC - Core
Semester	\vdots	I
Name of the Paper	$:$	Mathematical Physics-I
Unique Paper Code	$:$	32221101
Question Paper Set Number	$:$	A
Maximum Marks	$:$	75

Instruction for Candidates

Attempt FOUR questions in all.
All questions carry equal marks.

1. Solve the following differential equations.
(a) $x^{2} \frac{d y}{d x}+2 x y=5 y^{3}$
(b) $\frac{d y}{d x}=\frac{x-y-1}{x+y+3}$
(c) Determine the most general function $N(x, y)$ such that the following equation is exact and hence solve it.

$$
\left(x^{3}+x y^{2}\right) d x+N(x, y) d y=0
$$

2. Solve the following differential equations.
(a) $\left(D^{2}+4\right) y=x \sin 2 x$
(b) $\left(2 D^{2}+4 D+7\right) y=x^{2}$
(c) $\left(D^{2}+3 D+2\right) y=4 e^{x}$ (Use the method of variation of parameters)
3. (a) Show that the shortest distance between two points in a plane is a straight line.
(b) A function $f(x)$ is defined as follows:

$$
f(x)=\left\{\begin{array}{c}
6 x(1-x), \quad 0 \leq x \leq 1 \\
0, \quad \text { elsewhere }
\end{array}\right.
$$

Show that it is a probability density function. Find its mean and variance.
4. (a) Find the directional derivative of $\varphi=x^{2}+x y+y^{2}$ at $(1,-1)$ in direction towards the origin.
(b) Show that $f(r) \vec{r}$ is irrotational, where $f(r)$ is differentiable.
(c) Compute the integral given below for rectangle R such that, $1 \leq x \leq 3,1 \leq y \leq 2$

$$
\iint_{R} \frac{x y}{x^{2}+y^{2}} d A
$$

5. (a) Verify the divergence theorem for $\vec{A}=2 x^{2} y \hat{\imath}-y^{2} \hat{\jmath}+4 x z^{2} \hat{k}$ taken over the region in the first octant bounded by $x^{2}+y^{2}=9$ and $x=2$.
(b) Let $\vec{A}=(-4 x-3 y+5 z) \hat{\imath}+(-3 x+3 y+5 z) \hat{\jmath}+(4 x+5 y+3 z) \hat{k}$. Show that \vec{A} can be expressed as the gradient of a scalar function.
6. (a) Verify Green's theorem for the field,

$$
\vec{F}(x, y)=(x-y) \hat{\imath}+x \hat{\jmath}
$$

It is given that region R is bounded by unit circle C :

$$
\vec{r}(t)=\cos t \hat{\imath}+\sin t \hat{\jmath} ; 0 \leq t \leq 2 \pi
$$

(b) Find components of a vector $\vec{A}=2 y \hat{\imath}-z \hat{\jmath}+3 x \hat{k}$ in cylindrical coordinate system

