Name of the Paper : Mathematical Methods for Economics I

Name of the Course: B.A. (Hons.) Economics

Semester: I

Duration: 3 Hours

Maximum Marks: 75

Instructions for the candidates:

1. Answers may be written either in English or in Hindi; but the same medium should be used throughout the paper.
2. There are six questions in all. Attempt any four.
3. All parts of a question must be answered together.
4. All questions carry equal (18.75) marks.
5. Use of a simple calculator is allowed.
6. (a) A function f is given by
$f(x)=\left(1+\frac{3}{x}\right) \sqrt{x-7}$
(i) Find the domain of f, the zeroes of f, and the interval where f is positive.
(ii) Find the possible local extreme points and values.
(iii) Examine $f(x)$ as $x \rightarrow 0^{-}, x \rightarrow 0^{+}, x \rightarrow \infty$. Also, determine the limit of $f^{\prime}(x)$ as $x \rightarrow \infty$. Does f has a maximum or a minimum in the domain?
(b) Use the first four terms of the binomial expansion of $\left(1-\frac{1}{50}\right)^{\frac{1}{2}}$ to derive the approximation $\sqrt{2} \approx 1.414214$
(c) Show that following matrix A is invertible, and find the inverse A^{-1}

$$
A=\left(\begin{array}{lll}
3 & 2 & 5 \\
4 & 3 & 2 \\
5 & 2 & 3
\end{array}\right)
$$

(d) Suppose you inherit a piece of land whose market value t years from now is estimated to be $V(t)=50000 e^{\sqrt{2 t}}$. If the prevailing rate of interest remains constant at 10%, when will it be most advantageous for you to sell the land?
(e) Find the equation for the plane through the points $(3,4,-3),(5,2,1)$, and $(2,-1,4)$.
2. (a) Consider the following system of equations:

$$
\begin{gathered}
2 y z+z x-5 x y=2 \\
y z-z x+2 x y=1 \\
y z-2 z x+6 x y=3
\end{gathered}
$$

Show that $x y z= \pm 6$. And find all the possible values of x, y, and z.
(b) Sketch the following subsets of the $x-y$ plane
(i) $|x-1|+|y-1| \leq 1$
(ii) $|x||y-2| \leq 1$
(c) For the following function, find the expression for $\frac{d y}{d x}, \frac{d x}{d y}$

$$
y=\sqrt{x+\sqrt{x+\sqrt{x+\cdots}}}
$$

(d) Find all the solutions of the equation

$$
|x+1|-|x|+3|x-1|-2|x-2|=x+2
$$

(e) Determine if the function $f(x)=2^{\ln \sqrt{3 x+4}}$ is concave or convex. Does it have a global maximum, minimum, point of inflection?
3. (a) Consider the function f given by

$$
f(x)=x^{\frac{2}{3}}(6-x)^{\frac{1}{3}}
$$

Find the interval where f is increasing, the interval where f is decreasing, points of maximum, and points of minimum. And plot the graph.
(b) For the following function, find $f^{\prime}(x)$

$$
f(x)=3\left(\frac{3^{x} 7^{x}}{3^{x}+4(7)^{x}}\right)^{\frac{5}{x}}
$$

(c) Consider a monopolist who sells x units of Beans in Yemen. The price received is given by $P(x)=d-e x$ (where d and e are positive constants). His total cost is given by $C(x)=a x^{2}+b x+c$ (where a, b, and c are positive constants). Find the profit maximising output of Beans. Suppose the government imposes a tax on Beans of t per unit. Find an expression for the monopolist's profit and the new quantity shipped. Calculate the
government's tax revenue as a function of t, and find the revenue maximising tax rate.
(d) Determine the rank of the following matrix K, for all values of p :
$K=\left(\begin{array}{ccc}8-p & -2 & -4 \\ 2 & 2-p & 0 \\ 1 & 0 & 2-p\end{array}\right)$
(e) Let $g(x)=f(x)+f(1-x)$ and $f^{\prime \prime}(x)>0 ; x \in(0,1)$. Find the intervals of increase and decrease of $g(x)$.
4. (a) A study of paper machines in Industrial production in India from 1990 onwards estimated that the number z in use (measured in lakhs), as a function of time t (measured in years), so that $t=0$ corresponds to 1990 , is given by
$z=250.9+\frac{228.46}{1+8.11625 e^{-0.340416 t}}$
(i) Find the number of paper machines in 1990. How many machines were added in the decade up to 2000 ?
(ii) Find the limit for z as $t \rightarrow \infty$, and draw the graph.
(b) The equation $f\left(e^{x}\right)-g(x+y)=h(\ln (y))$ defines y as an implicit function of x, for $x \in \mathbb{R}$ and $y>0$. Find $\frac{d y}{d x}$ and determine its sign if $f^{\prime}<0, g^{\prime}<0$ and $h^{\prime}>0$.
(c) Suppose A and B are $n \times n$ matrices such that $A B=B^{3} A$. Prove that $(A B)^{2}=B^{12} A^{2}$.
(d) Test the convergence of the sequence $S_{n}=\left\{(-1)^{n} \frac{2 n^{3}}{n^{3}+1}\right\}_{n=1}^{\infty}$
(e) Is the following function continuous at $x=0$

$$
f(x)=\left\{\begin{array}{c}
x\left(e^{\frac{-1}{x}}-e^{\frac{1}{x}}\right) \\
e^{\frac{-1}{x}}+e^{\frac{1}{x}} \\
0, x=0
\end{array}\right.
$$

Is it differentiable at $x=0$?
(f) Solve the following system of linear equations:
$4 x+5 y+6 z=23$
$3 x+6 y+4 z=21$
$2 x+7 y+4 z=18$
5. (a) The line L is given by $x_{1}=-t+2, x_{2}=2 t-1$, and $x_{3}=t+3$
(i) Verify that the point $a=(2,-1,3)$ lies on L, but that $(1,1,1)$ doesn't.
(ii) Determine the direction of L.
(iii) Find the equation of the plane through a that is orthogonal to L.
(iv) Find the point where L intersects the plane $3 x_{1}+5 x_{2}-x_{3}=6$.
(b) Find the intervals where the following cost function $C(x)$ is convex and where it is concave, find the unique inflection point:

$$
C(x)=a x^{3}+b x^{2}+c x+d,(a>0, b<0, c>0, d<0)
$$

(c) Show that if f and g are functions for which $f^{\prime}(x)=g(x)$ and $g^{\prime}(x)=f(x)$, then $f^{2}(x)-g^{2}(x)$ is a constant.
(d) Find the inverse of the function $f(x)=-x^{6}+5, x>0$ (if it exists). Also, find the global maxima.
(e) Solve for all possible real values of x satisfying:

$$
x^{6}+9 x^{3}+8=0
$$

(f) Consider the following two statements A and B
A : number n is odd,
$B: n$ is a prime number strictly greater than 2.
Check whether A is necessary or sufficient or both necessary and sufficient condition for B.
6. (a) Suppose that the price of a precious metal after x years is given by $P(x)=M e^{n}$, where M and n are constants.
(i) Find M and n when $P(0)=4$ and $P^{\prime}(0)=1$. In this case, what is the price after 10 years?
(ii) Assuming calculated values of M and n from (i). When the price has increased to 18 , it becomes controlled so that the annual price increase is limited to 10%. When are price controls first needed? What length of time is needed for the price to double
before and after price controls are introduced?
(b) Prove the following inequalities
(i) $\ln \left(\frac{1+x}{1-x}\right)>2 x$ for $0<x<1$
(ii) $e^{x}>1+x+\frac{x^{2}}{2}$, for $x>0$
(c) Find a and b, such that the following function, f has vertical asymptote at $x=5$, and horizontal asymptote at $y=-3$.
$f(x)=\frac{a x+5}{3-b x}$
(d) Consider the following system of linear equations:

$$
\begin{aligned}
& 2 x-y+3 z=2 \\
& x+y+2 z=2 \\
& 5 x-y+p z=q
\end{aligned}
$$

(i) For what real values of p and q, the following system of linear equations have infinitely many solutions?
(ii) For the value of $p=3$ and $q=5$, find all possible solutions to the system.
(e) Find the points of maximum, and the points of minimum for the following function $f(x)$, in the interval $[0,1]$
$f(x)=\frac{1}{x(1-x)}$
$(5,3,3,6,1.75)$

