- 2. Mathematical Physics (1995), A.K. Ghatak, IC Goyal and S.J. Chua, Macmillan India, New Delhi.
- 3. Essential Mathematical Methods, K.F.Riley & M.P.Hobson, 2011, Cambridge Univ. Press.
- 4. Differential Equations, George F. Simmons, 2007, McGraw Hill.
- 5. Introduction to Vector Analysis, H.F. Davis and A. D. Snider, Wm. C. Brown Publishers; 6th edition (1991).
- 6. Statistics A Guide to the Use of Statistical Methods n the Physical Sciences, R.J. Barlow, Wiley (1993).

References for Laboratory Work:

- 1. Schaum's Outline of Programming with C++', J. Hubbard, 2000, McGraw-Hill Education.
- 2. C++ How to Program', Paul J. Deitel and Harvey Deitel, Pearson (2016).
- 3. Introduction to Numerical Analysis, S.S. Sastry, 5th Edn., 2012, PHI Learning Pvt. Ltd.
- 4. Computational Physics, Darren Walker, 1st Edn., Scientific International Pvt. Ltd (2015).
- 5. Elementary Numerical Analysis, K.E. Atkinson, 3rd Edn., 2007, Wiley India Edition.

CC-II: Mechanics (32221102) Credit : 06 (Theory-04, Practical-02) Theory : 60 Hours Practical : 60 Hours

Course Objective

This course reviews the concepts of mechanics learnt at school from a more advanced perspective and goes on to build new concepts. It begins with Newton's Laws of Motion and ends with the Fictitious Forces and Special Theory of Relativity. Students will also appreciate the Collisions in CM Frame, Gravitation, Rotational Motion and Oscillations. The students will be able to apply the concepts learnt to several real world problems.

Course Learning Outcomes

Upon completion of this course, students are expected to

• Understand laws of motion and their application to various dynamical situations.

- Learn the concept of inertial reference frames and Galilean transformations. Also, the concept of conservation of energy, momentum, angular momentum and apply them to basic problems.
- Understand translational and rotational dynamics of a system of particles.
- Apply Kepler's laws to describe the motion of planets and satellite in circular orbit.
- Understand concept of Geosynchronous orbits
- Explain the phenomenon of simple harmonic motion.
- Understand special theory of relativity special relativistic effects and their effects on the mass and energy of a moving object.
- In the laboratory course, the student shall perform experiments related to mechanics: compound pendulum, rotational dynamics (Flywheel), elastic properties (Young Modulus and Modulus of Rigidity), fluid dynamics, estimation of random errors in the observations etc.

Unit 1

Fundamentals of Dynamics: Reference frames, Inertial frames, Galilean transformations, Galilean invariance, Review of Newton's Laws of Motion. Momentum of variable mass system: motion of rocket. Dynamics of a system of particles. Principle of conservation of momentum. Impulse. Determination of Centre of Mass of discrete and continuous objects having cylindrical and spherical symmetry (1-D, 2-D & 3-D).

(5 Lectures)

Unit 2

Work and Energy: Work and Kinetic Energy Theorem. Conservative and nonconservative forces. Potential Energy. Energy diagram. Stable, unstable and neutral equilibrium. Force as gradient of potential energy. Work & Potential energy. Work done by non-conservative forces. Law of conservation of Energy.

(5 Lectures)

Collisions: Elastic (1-D and 2-D) and inelastic collisions. Centre of Mass and Laboratory frames.

(4 Lectures)

Unit 3

Rotational Dynamics: Angular momentum of a particle and system of particles. Torque. Principle of conservation of angular momentum. Rotation about a fixed axis. Moment of inertia, theorem of parallel and perpendicular axes. Determination of moment of inertia of discrete and continuous objects [1-D, 2-D & 3-D (rectangular, cylindrical and spherical)]. Kinetic energy of rotation. Motion involving both translation and rotation.

(10 Lectures)

Unit 4

Gravitation and Central Force Motion: Law of gravitation. Gravitational potential energy. Inertial and gravitational mass. Potential and field due to spherical shell and solid sphere.

(2 Lectures)

Motion of a particle under a central force field: Two-body problem, its reduction to onebody problem and its solution. Reduction of angular momentum, kinetic energy and total energy. The energy equation and energy diagram. Kepler's Laws. Satellite in circular orbit, Geosynchronous orbits.

(7 Lectures)

Unit 5

Oscillations: Idea of SHM. Differential equation of SHM and its solution. Kinetic energy, potential energy, total energy and their time-average values. Compound pendulum. Damped oscillation. Forced oscillations: Transient and steady states, sharpness of resonance and Quality Factor.

(5 Lectures)

Non-Inertial Systems: Non-inertial frames and fictitious forces. Uniformly rotating frame. Centrifugal force. Coriolis force and its applications.

(7 Lectures)

Unit 6

Special Theory of Relativity: Outcomes of Michelson-Morley Experiment. Postulates of Special Theory of Relativity. Lorentz Transformations. Simultaneity, Length contraction, Time dilation. Relativistic transformation of velocity, acceleration, frequency and wave number. Mass of relativistic particle. Mass-less Particles. Mass-energy Equivalence. Relativistic Doppler effect (transverse and longitudinal). Relativistic Kinematics (decay problems, inelastic collisions and Compton effect). Transformation of Energy and Momentum.

(15 Lectures)

Practical : 60 Hours

Demonstration cum laboratory sessions on the construction and use of Vernier callipers, screw gauge and travelling microscope, and necessary precautions during their use.

Sessions and exercises on the least count errors, their propagation and recording in final result up to correct significant digits, linearization of data and the use of slope and intercept to determine unknown quantities.

Session on the writing of scientific laboratory reports, which may include theoretical and practical significance of the experiment performed, apparatus description, relevant theory, necessary precautions to be taken during the experiment, proper recording of observations, data analysis, estimation of the error and explanation of its sources, correct recording of the result of the experiment, and proper referencing of the material taken from other sources (books, websites, research papers, etc.)

At least 06 experiments from the following

- 1. Measurements of length (or diameter) using Vernier Calliper, screw gauge and travelling microscope.
- 2. To study the random error in observations.
- 3. To determine the height of a building using a Sextant.
- 4. To study the motion of the spring and calculate (a) Spring constant and, (b) g.
- 5. To determine the Moment of Inertia of a Flywheel.
- 6. To determine g and velocity for a freely falling body using Digital Timing Technique.
- 7. To determine Coefficient of Viscosity of water by Capillary Flow Method (Poiseuille's method).
- 8. To determine the Young's Modulus of a Wire by Optical Lever Method.
- 9. To determine the Modulus of Rigidity of a Wire by Maxwell's needle.
- 10. To determine the elastic Constants of a wire by Searle's method.
- 11. To determine the value of g using Bar Pendulum.
- 12. To determine the value of g using Kater's Pendulum.

References for Theory:

Essential Readings:

- 1. An Introduction to Mechanics (2/e), Daniel Kleppner & Robert Kolenkow, 2014, Cambridge University Press.
- 2. Mechanics Berkeley Physics Course, Vol. 1, 2/e: Charles Kittel, et. al., 2017, McGraw Hill Education.
- 3. Theory and Problems of Theoretical Mechanics, Murray R. Spiegel, 1977, McGraw Hill Education.
- 4. Intermediate Dynamics, Patrick Hamill, 2010, Jones and Bartlett Publishers.
- 5. Analytical Mechanics, G. R. Fowles and G. L. Cassiday, 2005, Cengage Learning.

Additional Readings:

- 1. Feynman Lectures, Vol. 1, R. P. Feynman, R. B. Leighton, M. Sands, 2008, Pearson Education.
- 2. University Physics, Ronald Lane Reese, 2003, Thomson Brooks/Cole.
- 3. University Physics, H. D. Young, R. A. Freedman, 14/e, 2015, Pearson Education.
- 4. Fundamentals of Physics, Resnick, Halliday & Walker 10/e, 2013, Wiley.
- 5. Engineering Mechanics, Basudeb Bhattacharya, 2/e, 2015, Oxford University Press.
- 6. Physics for Scientists and Engineers, R. A. Serway, J. W. Jewett, Jr, 9/e, 2014, Cengage Learning.
- 7. Mechanics, D. S. Mathur, P. S. Hemne, 2012, S. Chand.

References for Laboratory Work:

- 1. Advanced Practical Physics for students, B. L. Flint and H. T. Worsnop, 1971, Asia Publishing House.
- 2. Engineering Practical Physics, S. Panigrahi & B. Mallick, 2015, Cengage Learning India Pvt. Ltd.

- 3. Practical Physics, G. L. Squires, 2015, 4/e, Cambridge University Press.
- 4. A Text Book of Practical Physics, I. Prakash & Ramakrishna, 11/e, 2011, Kitab Mahal.

CC-III: Electricity and Magnetism (32221201) Credit: 06 (Theory-04, Practical-02) Theory: 60 Hours Practical: 60 Hours

Course Objective

This course reviews the concepts of electromagnetism learnt at school from a more advanced perspective and goes on to build new concepts. The course covers static and dynamic electric and magnetic fields, and the principles of electromagnetic induction. It also includes analysis of electrical circuits and introduction of network theorems. The students will be able to apply the concepts learnt to several real world problems.

Course Learning Outcomes

At the end of this course the student will be able to

- Demonstrate the application of Coulomb's law for the electric field, and also apply it to systems of point charges as well as line, surface, and volume distributions of charges.
- Demonstrate an understanding of the relation between electric field and potential, exploit the potential to solve a variety of problems, and relate it to the potential energy of a charge distribution.
- Apply Gauss's law of electrostatics to solve a variety of problems.
- Calculate the magnetic forces that act on moving charges and the magnetic fields due to currents (Biot- Savart and Ampere laws)
- Understand the concepts of induction and self-induction, to solve problems using Faraday's and Lenz's laws.
- Understand the basics of electrical circuits and analyze circuits using Network Theorems.
- In the laboratory course the student will get an opportunity to verify network theorems and study different circuits such as RC circuit, LCR circuit. Also, different methods to measure low and high resistance, capacitance, self-inductance, mutual inductance, strength of a magnetic field and its variation in space will be learnt.

Unit 1