- 4. Levie, R. de.(2001), How to use Excel in analytical chemistry and in general scientific data analysis, Cambridge University Press.
- 5. Le, C.T.; Eberly, L.E. (2016), Introductory Biostatistics, Wiley.

Additional Resources:

- 1. Chemical safety matters IUPAC IPCS, Cambridge University Press, 1992.
- 2. OSU safety manual 1.01.

Teaching Learning Process

Lecture with conventional teaching aids, presentations, invited talks on thrusting areas, group discussions, literature surveyand lab visit.

Assessment Methods

- Internal assessment through assignments and class test.
- Writing review on identified research problem
- Poster presentation
- End semester university examination

Keywords

Review of research papers, writing research papers, citation, and Laboratory safety.

Course Code: CHEMISTRY –DSE-8 Course Title: Green Chemistry Total Credits: 06 (Credits: T (Total Lectures: Theory- 60, Practical-60)

(Credits: Theory-04, Practical-02)

Objectives:

Today's society is moving towards becoming more and more environmentally conscious. There is rising concern of environmental pollution, depleting resources, climate change, ozone depletion, heaps and heaps of landfills piling up, legislation which is getting stringent with strict environmental laws, rising cost of waste deposits and so on. We are faced with a challenge to work towards sustainable practices. Green chemistry has arisen from these concerns. It is not a new branch of chemistry but the way chemistry should be practiced. Innovations and applications of green chemistry in education has helped companies not only gainenvironmental benefits but at the same time achieve economic and societal goals also. This is possible because these undergraduate students are ultimate scientific community of tomorrow.

Learning Outcomes:

By the end of this course, students will be able to:

- Understand the twelve principles of green chemistry and will build the basic understanding of toxicity,hazard and risk of chemical substances.
- Understand stoichiometric calculations and relate them to green chemistry metrics. They will learn about atom economy and how it is different from percentage yield.
- Learn to design safer chemical ,products and processes that are less toxic,than current alternatives. Hence,they will understand the meaning of inherently safer design for accident prevention and the principle "what you don't have can't harm you"
- Understand benefits of use of catalyst and bio catalyst ,use of renewable feed stock which helps in energy efficiency and protection of the environment, renewable energy sources, importance led reactions in various green solvents.
- Appreciate the use of green chemistry in problem solving skills, critical thinking and valuable skills to innovate and find out solution to environmental problems. Thus the students are able to realise that chemistry can be used to solve rather than cause environmental problems.
- Green chemistry is a way to boost profits, increase productivity and ensure sustainability with absolute zero waste. Success stories and real world cases also motivate them to practice green chemistry. These days customers are demanding to know about a product: Is it green? Does it contribute to global warming? Was it made from non depletable resources? Students have many career opportunities as " green" is the path to success.

Unit 1:

Introduction to Green Chemistry

What is Green Chemistry? Some important environmental laws, pollution prevention Act of 1990, emergence of green chemistry, Need for Green Chemistry. Goals of Green Chemistry. Limitations/ Obstacles in the pursuit of the goals of Green Chemistry

(Lectures:5)

Unit 2:

Principles of Green Chemistry and Designing a Chemical synthesis

Twelve principles of Green Chemistry and their explanation with examples

Special emphasis on the following:

- Prevention of Waste/ by products; maximum incorporation of the materials used in the process into the final products, Environmental impact factor, waste or pollution prevention hierarchy
- Green metrics to assess greenness of a reaction, e.g. Atom Economy, calculation of atom economy of the rearrangement, addition, substitution and elimination reactions.
- Prevention/ minimization of hazardous/ toxic products reducing toxicity
- Risk = (function) hazard x exposure
- Designing safer chemicals with minimum toxicity yet has the ability to perform the desired functions
- Green solvents: super critical fluids with special reference to carbon dioxide, water as a solvent for organic reactions, ionic liquids, fluorous biphasic solvent, PEG, solventless processes, solvents obtained from renewable resources and how to compare greenness of solvents
- Energy requirements for reactions alternative sources of energy: use of microwaves , ultrasonic energy and photochemical energy
- Selection of starting materials; should be renewable rather than depleting, Illustrate with few examples such as biodiesel and polymers from renewable resources (such as green plastic)
- Avoidance of unnecessary derivatization careful use of blocking/protecting groups
- Use of catalytic reagents (wherever possible) in preference to stoichiometric reagents; catalysis and green chemistry, comparison of heterogeneous and homogeneous catalysis, biocatalysis, asymmetric catalysis and photocatalysis.

- Design for degradation: A product should not persist after the commercial function is over e.g. soaps and detergents, pesticides and polymers
- Strengthening/ development of analytical techniques to prevent and minimize the generation of hazardous substances in chemical processes.
- Prevention of chemical accidents designing greener processes, inherent safer design, principle of ISD "What you don't have cannot harm you", greener alternative to Bhopal Gas Tragedy (safer route to carcarbaryl) and Flixiborough accident (safer route to cyclohexanol) subdivision of ISD, minimization, simplification, substitution, moderation and limitation.

(Lectures:25)

Unit 3:

Examples of Green Synthesis/ Reactions

- Green Synthesis of the following compounds: adipic acid, catechol, disodium iminodiacetate (alternative to Strecker synthesis).
- Green Reagents: Non-phosgene Isocyanate Synthesis, Selective Methylation using dimethylcarbonate.
- Microwave assisted solvent free synthesis of copper phthalocyanine
- Microwave assisted reactions in water: Hofmann Elimination, methyl benzoate to benzoic acid and Decarboxylation reaction
- Ultrasound assisted reactions: sonochemical Simmons-Smith Reaction (Ultrasonic alternative to lodine)

(Lectures:10)

Unit 4:

Real world case studies based on the Presidential green chemistry awards of EPA

- Surfactants for Carbon Dioxide replacing smog producing and ozone depleting solvents with CO₂ for precision cleaning and dry cleaning of garments.
- A new generation of environmentally advanced wood preservatives: Getting the chromium and Arsenic out of pressure treated wood.
- An efficient, green synthesis of a compostable and widely applicable plastic (polylactic acid) made from corn.
- Healthier Fats and oils by Green Chemistry: Enzymatic Inter esterification for production of No Trans-Fats and Oils.
- Development of Fully Recyclable Carpet: Cradle to Cradle Carpeting.
- Using a naturally occurring protein to stimulate plant growth, improve crop quality, increase yields, and suppress disease.

(Lectures:10)

Unit 5:

Future Trends in Green Chemistry

Oxidation reagents and catalysts; Biomimcry and green chemistry, Biomimetic, Multifunctional Reagents; mechanochemical and solvent free synthesis of inorganic complexes; co crystal controlled solid state synthesis (C²S³); Green chemistry in sustainable development.

(Lectures:10)

Practical:

(Credits: 2, Laboratory periods: 60)

Chemistry Lab- Green chemistry

Characterization by m. pt., U.V.-Visible spectroscopy, IR spectroscopy, and any other specific method should be done (wherever applicable).

Safer starting materials

1. Preparation and characterization of nanoparticles of gold using tea leaves/silver nanoparticles using plant extracts.

Using renewable resources

2. Preparation of biodiesel from waste cooking oiland characterization (TLC, pH, Solubility, Combustion Test, Density, Viscosity, Gel Formation at Low Temperature and IR can be provided).

Use of enzymes as catalysts

3. Benzoin condensation using Thiamine Hydrochloride as a catalyst instead of cyanide.

Alternative green solvents

- 4. Extraction of D-limonene from orange peel using liquid CO₂ prepared form dry ice.
- 5. Mechanochemical solvent free, solid-solid synthesis of azomethine using p- toluidine and o-vanillin/p- vanillin (various other combinations of primary amine and aldehyde can also be tried).

Alternative sources of energy

- 6. Solvent free, microwave assisted one pot synthesis of phthalocyanine complex of copper(II).
- 7. Photoreduction of benzophenone to benzopinacol in the presence of sunlight.

Reducing waste

8. Designing and conducting an experiment by utilizing the products and by products obtained in above preparations which become waste otherwise if not used. This is done by critical thinking and literature survey.

Some representative examples:

- Use of nanoparticles as catalyst for a reaction
- Benzoin converted into Benzil and Benzil into Benzilic acid by a green method
- Use of azomethine for complex formation
- Rearrangement reaction from Benzopinacol to Benzopinacolone
- Conversion of byproduct of biodiesel to a useful product
- Students should be taught to do spot tests for qualitative inorganic analysis for cations and anions, and qualitative organic analysis for preliminary test and functional group analysis.

References:

Theory:

- 1. Anastas, P.T.; Warner, J.C.(1998), Green Chemistry, Theory and Practice, Oxford University Press.
- 2. Lancaster, M.(2016), Green Chemistry An Introductory Text. 2nd Edition, RSC Publishing.
- 3. Cann , M. C. ;Connely, M. E. (2000), **Real-World cases in Green Chemistry,** American Chemical Society, Washington.
- 4. Matlack, A.S.(2001), Introduction to Green Chemistry, Marcel Dekker.
- 5. Alhuwalia, V. K.; Kidwai, M.R. (2005), New Trends in Green chemistry, Anamalaya Publishers.

Practical:

- 1. Kirchoff, M.; Ryan, M.A. (2002), **Greener approaches to undergraduate chemistry experiment.** American Chemical Society, Washington DC.
- 2. Sharma, R.K.; Sidhwani, I.T.; Chaudhari, M.K.(2013), **Green Chemistry Experiments: A monograph**, I.K. International Publishing House Pvt Ltd. New Delhi.
- 3. Pavia, D.L.; Lamponam, G.H.; Kriz, G.S.W. B.(2006), Introduction to organic Laboratory Technique-A Microscale approach, 4th Edition, Brrooks-Cole Laboratory Series for Organic chemistry.
- 4. Wealth from Waste: A green method to produce biodiesel from waste cooking oil and generation of useful products from waste further generated. Indu Tucker Sidhwani et al. University of Delhi, Journal of Undergraduate Research and Innovation, Volume 1, Issue 1, February 2015, ISSN: 2395-2334.
- 5. Sidhwani, Tucker I.; Chowdhury, S. Greener alternatives to Qualitative Analysis for Cations without H₂S and other sulfur containing compounds, J. Chem. Educ. 2008, 85, 1099.
- 6. Sidhwani, Tucker I.; Chowdhury, S. et al., DU Journal of Undergraduate Research and Innovation, 2016, Volume 2, Issue 2, 70-79.
- 7. Dhingra, S., ;Angrish, C. Qualitative organic analysis: An efficient, safer, and economical approach to preliminary tests and functional group analysis. *Journal of Chemical Education*, 2011, *88*(5), 649-651.

Additional References:

- 1. Cann , M. C.; Umile, T.P. (2008), Real world cases in Green chemistry Vol 11, American chemical Society, Washington.
- 2. Benyus, J. (1997), Innovations Inspired by nature, Harper collins.
- 3. Garay, A. L; Pichon, A.; James, S.L. Chem Soc Rev, 2007, 36,846-855.

Teaching Learning Process:

- Conventional chalk and board teaching
- Power point presentations
- Interactive sessions
- Literature survey and critical thinking to design to improve a traditional reaction and problem solving
- Visit to a green chemistry lab
- Some motivating short movies in green chemistry especially in bio mimicry

Assessment Methods:

- Presentation by students
- Class Test
- Written Assignment
- End Semester University Theory and Practical Exams

Keywords:

Green chemistry, Twelveprinciples of green chemistry, Atom economy, Waste minimization, Green metric, Green solvents, Solvent free, Catalyst, Bio-catalyst, Renewable energy sources, Hazardous, Renewable feedstock ,lonic liquids, Supercritical fluids ,Inherent safer design, Green synthesis, Co-crystal controlled solid state synthesis, Sustainable development, Presidential green chemistry awards.

Course Code: CHEMISTRY –DSE-9 Course Title: Industrial Chemicals and Environment Total Credits: 06 (Credits: Theory-04, Practical-02) (Total Lectures: Theory- 60, Practical-60)

Objectives:

The objective of this course is to make students aware about the concepts of different gases and their industrial production, uses, storage and hazards. Manufacturing, applications, analysis and hazards of the Inorganic Chemicals, Preparation of Ultra-Pure metals for semiconducting technology, Air and Water pollution, control measures for Air and Water Pollutants, Catalyst and Biocatalyst, Energy and Environment.

Learning Outcomes:

By the end of this course students will be able to understand:

- The different toxic gases and their toxicity hazards
- Safe design systems for large scale production of industrial gases.
- Manufacturing processes, handling and storage of inorganic chemicals.
- Hazardous effects of the inorganic chemicals on human beings and vegetation.
- The requirement of ultra-pure metals for the semiconducting technologies
- Composition of air, various air pollutants, effects and control measures of air pollutants.
- Different sources of water, water quality parameters, impacts of water pollution, water treatment.
- Different industrial effluents and their treatment methods.
- Different sources of energy.
- Generation of nuclear waste and its disposal.
- Use of biocatalyst in chemical industries.

Unit 1:

Industrial Gases: Large scale production, uses storage and hazards in handling of the following gases: oxygen, nitrogen, argon, neon, helium, hydrogen, acetylene, carbon monoxide, chlorine, fluorine, and sulphur dioxide.

(Lectures: 6)

Unit 2: